[1] 程锦锋, 方贵盛, 高惠芳. 表面缺陷检测的机器视觉技术研究进展[J]. 计算机应用研究, 2023, 40(4): 967-977.[2] 杨传礼, 张修庆. 基于机器视觉和深度学习的材料缺陷检测应用综述[J]. 材料导报, 2022, 36(16): 226-234.
[3] LIFE-FEI, FERGUS, PERONA. A Bayesian approach to unsupervised one-shot learning of object categories[C]. Proceedings Ninth IEEE International Conference on Computer Vision. Nice, France: IEEE, 2003: 1134-1141.
[4] 史燕燕, 史殿习, 乔子腾, et al. 小样本目标检测研究综述[J]. 计算机学报, 2023, 46(8): 1753-1780.
[5] YANX, CHENZ, XUA, et al. MetaR-CNN: towards general solver for instance-level low-shot learning[C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South): IEEE, 2019: 9576-9585.
[6] JINGJ, MAH, ZHANGH. Automatic fabric defect detection using deep convolutional neural network[J]. Coloration Technology, 2019, 135(3): 213-223.
[7] VALENTEAC, WADAC, NEVESD, et al. Print defect mapping with semantic segmentation[C]. 2020 IEEE Winter Conference on Applications of Computer Vision (WACV). Snowmass Village, CO, USA: IEEE, 2020: 3540-3548.
[8] YANGY, WEIF, SHIM, et al. Restoring negative information in few-shot object detection[J]. 2020.
[9] WANGYX, GIRSHICKR, HEBERTM, et al. Low-shot learning from imaginary data[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT: IEEE, 2018: 7278-7286.
[10] VINYALSO, BLUNDELLC, LILLICRAPT. Matching networks for one-shot learning[C]. 30th Annual Conference on Neural Information Processing Systems, NIPS 2016: 3637-3645.
[11] SANTOROA, BARTUNOVS, BOTVINICKM, et al. Meta-learning with memory-augmented neural networks[C]. Proceedings of the 33rd International Conference on Machine Learning. PMLR, 2016: 1842-1850.
[12] WOOS, PARKJ, LEEJY, et al. CBAM: Convolutional block attention module[M]. FERRARI V, HEBERT M, SMINCHISESCU C, et al. Computer Vision–ECCV 2018: Cham: Springer International Publishing, 2018: 3-19.