|本期目录/Table of Contents|

[1]郭 箤,田锦明,张 军,等.基于DBSCAN与BP神经网络的轮速传感器故障诊断研究[J].工业仪表与自动化装置,2024,(06):99-103.[doi:10.19950/j.cnki.CN61-1121/TH.2024.06.019]
 GUO Zu,TIAN Jinming,ZHAGN Jun,et al.Study on fault diagnosis of intelligent wheel speed sensor based on DBSCAN and BP neural network[J].Industrial Instrumentation & Automation,2024,(06):99-103.[doi:10.19950/j.cnki.CN61-1121/TH.2024.06.019]
点击复制

基于DBSCAN与BP神经网络的轮速传感器故障诊断研究(PDF)

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2024年06期
页码:
99-103
栏目:
出版日期:
2024-12-15

文章信息/Info

Title:
Study on fault diagnosis of intelligent wheel speed sensor based on DBSCAN and BP neural network
文章编号:
1000-0682(2024)06-0099-05
作者:
郭 箤田锦明张 军
( 1.江苏海洋大学 电子工程学院,江苏 连云港 222005;2.大陆汽车电子(连云港)有限公司,江苏 连云港 222006)
Author(s):
GUO ZuTIAN JinmingZHAGN Junet al
( 1.School ofElectronic Engineering,Jiangsu Ocean University,Jiangsu Lianyungang 222005,China; 2.Continental Automotive Electronics (Lianyungang) Co.,Ltd.,Jiangsu Lianyungang 222006, China )
关键词:
轮速传感器故障诊断DBSCANBP 神经网络
Keywords:
wheel speed sensor thermal shock test chamber centralized monitoring signal filte- ringfunctional applications
分类号:
TP306 +3.4
DOI:
10.19950/j.cnki.CN61-1121/TH.2024.06.019
文献标志码:
A
摘要:
针对工业生产时轮速传感器性能测试数据过多,难以对其故障类型进行识别的问题,设计了基于 DBSCAN 与 BP 神经网络的轮速传感器故障诊断方法。首先,根据轮速传感器工作原理 以及实际测试数据分析了轮数传感器故障类型以及对应的故障数据。然后,利用 DBSCAN 对轮速 传感器的性能测试数据进行异常值检测,同时建立 BP 神经网络进行训练及测试,用于对异常值对 应的故障类型进行诊断与分类,并将 BP 神经网络与 GRNN 神经网络以及 PNN 神经网络的故障诊 断速度以及准确率进行对比。实验结果显示:针对轮速传感器故障类型检测 BP 神经网络的速度 及准确率有明显优势,该文设计的轮速传感器故障检测算法能够准确的从测试数据中提取故障数 据并进行故障诊断。
Abstract:
In view of the problem that the performance test data of the wheel speed sensor is difficult to identify the failure type in industrial production, the wheel speed sensor fault diagnosis method based on DBSCAN and BP neural network is designed. Firstly, according to the working principle of wheel speed sensor and the actual test data, the fault type of wheel number sensor and the corresponding fault data are analyzed. Then, DBSCAN is used to detect the performance test data of the wheel speed sensor,and to train and test the BP neural network,to diagnose and classify the fault types corresponding to the abnormal values, and to compare the fault diagnosis speed and accuracy of BP neural network with GRNN neural network and PNN neural network. The experimental results show that the wheel speed sensor fault type has obvious advantages. The wheel speed sensor fault detection algorithm designed in this paper can accurately extract the fault data from the test data and diagnose it.

参考文献/References:

[1]郑玲玲,段春光,尹海.基于ABS轮速传感器的信号模拟系统研究与应用[J].实验室研究与探索,2019,38(8):92-95+118.

[2]孙丽娜,王佳庆,黄永红.基于PNN的汽车ABS系统中压力调节器和轮速传感器的故障诊断[J].计算机测量与控制,2020,28(4):16-21.
[3]王辉,闵永军,周菊.霍尔式轮速传感器永磁体磁场均匀性测量方法研究[J].仪表技术与传感器,2020(5):14-17.
[4]田锦明,黄超,纪林海,等.基于LabVIEW的智能轮速传感器测试系统设计[J].电子测量技术,2022,45(1):153-158.
[5]李学慧,丁能根,冯永明.ABS磁电式轮速传感器故障诊断[J].机械工程师,2007(3):120-122.
[6]王玉宝.ABS系统轮速传感器故障判断及检测方法[J].汽车电器,2004(6):48-49.
[7]张翔,温熙圆,曹宏发,等.基于迭代学习的速度传感器故障诊断研究[J].铁道科学与工程学报,2021,18(11):3006-3012.
[8]王杰杰,龚光剑.基于STC微控制器的DC电机系统设计[J].电子制作,2023,31(19):3-7.
[9]贺玉海,周庆琨,程聑晟,等.基于改进K-Medoids的组合聚类算法及异常值检测研究[J].大连理工大学学报,2022,62(4):403-410.
[10]闫亚男,韩长霖,陈小松,等.融合时间序列特性的水电遥测数据清洗优化框架[J].水力发电,2021,47(11):79-83+95.
[11]司少剑,曾劲松,田钊,等.BP神经网络在人体摔倒趋势识别中的应用[J].机械设计与制造,2023,386(4):167-171.
[12]王超,杨青祥,齐天玉,等.基于机器视觉和BP神经网络的单车荷载识别[J].华中科技大学学报(自然科学版),2023,51(8):53-59.

相似文献/References:

[1]尹新权,王 珺,张亚萍.基于模糊理论的柴油机故障诊断专家系统[J].工业仪表与自动化装置,2015,(01):111.
 YIN Xinquan,WANG Jun,ZHANG Yaping.Fault diagnostic expert system of diesel engine based on fuzzy theory[J].Industrial Instrumentation & Automation,2015,(06):111.
[2]孟文俊a,徐光华a,b,等.基于LabVIEW的滚动轴承非平稳过程监测诊断及性能评估系统的开发[J].工业仪表与自动化装置,2015,(02):18.
 MENG Wenjuna,XU Guanghuaa,b,et al.Development of non-stationary process for rolling bearing fault diagnosis and performance evaluation system based on LabVIEW[J].Industrial Instrumentation & Automation,2015,(06):18.
[3]李 茜,王延年.基于普通铣床数控化的S7-300 PLC远程监控和故障诊断系统设计[J].工业仪表与自动化装置,2015,(02):49.
 LI Qian,WANG Yannian.Design of remote monitoring and fault diagnosis systembased on the ordinary milling machine of numerical control of S7-300 PLC[J].Industrial Instrumentation & Automation,2015,(06):49.
[4]巴寅亮,王书提,谢 鑫.基于改进的BP神经网络的柴油发动机故障诊断[J].工业仪表与自动化装置,2015,(03):94.
 BA Yinliang,WANG Shuti,XIE Xin.Research of diesel engine fault based on improved BP neural network[J].Industrial Instrumentation & Automation,2015,(06):94.
[5]王江荣,文 晖,黄建华.基于差分进化算法的二次回归在矿井通风机故障诊断中的应用[J].工业仪表与自动化装置,2015,(01):50.
 WANG Jiangrong,WEN Hui,HUANG Jianhua.The two regression in ventilator fault diagnosis application based on difference evolutionary algorithm[J].Industrial Instrumentation & Automation,2015,(06):50.
[6]张卫峰,惠俊军.智能故障诊断技术的现状及展望[J].工业仪表与自动化装置,2017,(05):21.
 ZHANG Weifeng,HUI Junjun.The present situation and prospects of intelligence fault diagnosis technology[J].Industrial Instrumentation & Automation,2017,(06):21.
[7]宫玮丽,梁 波,王晓兰.基于小波包和Hilbert包络分析的隧道掘进机主轴承故障诊断方法研究[J].工业仪表与自动化装置,2018,(02):15.[doi:1000-0682(2018)02-0000-00]
 GONG Weili,LIANG Bo,WANG Xiaolan.Research on fault diagnosis method of main bearing of tunnel boring machine based on wavelet packet and Hilbert envelope analysis[J].Industrial Instrumentation & Automation,2018,(06):15.[doi:1000-0682(2018)02-0000-00]
[8]席 维,白 璘,武奇生.基于经验小波变换和峭度值的滚动轴承故障检测方法[J].工业仪表与自动化装置,2018,(06):26.[doi:1000-0682(2018)06-0000-00]
 XI Wei,BAI Lin,WU Qisheng.A novel rolling bearing fault detection method based on empirical wavelet transform and kurtosis value[J].Industrial Instrumentation & Automation,2018,(06):26.[doi:1000-0682(2018)06-0000-00]
[9]张远绪,程换新.基于改进的RBF神经网络的滚动轴承故障诊断[J].工业仪表与自动化装置,2018,(06):31.[doi:1000-0682(2018)06-0000-00]
 ZHANG Yuanxu,CHENG Huanxin.Fault diagnosis of rolling bearing based on improved RBF neural network[J].Industrial Instrumentation & Automation,2018,(06):31.[doi:1000-0682(2018)06-0000-00]
[10]郭兰中,彭刘阳,窦 岩,等.基于小波包-AR谱和GA-BP网络的轴承故障诊断研究[J].工业仪表与自动化装置,2019,(03):3.[doi:1000-0682(2019)03-0000-00]
 GUO Lanzhong,PENG Liuyang,DOU Yan,et al.Research on bearing fault diagnosis based on wavelet packet –auto regressive model spectrum and GA-BP neural network[J].Industrial Instrumentation & Automation,2019,(06):3.[doi:1000-0682(2019)03-0000-00]

备注/Memo

备注/Memo:
收稿日期:2024-05-08第一作者:郭箤(1999—),女,硕士研究生,汉,安徽人,研究方向为智能系统及故障诊断
更新日期/Last Update: 1900-01-01