|本期目录/Table of Contents|

[1]关卫军,周 苑,王爱华,等.基于石英增强光声光谱技术的微水传感器在电力系统中的应用研究[J].工业仪表与自动化装置,2024,(02):91-96.[doi:DOI:10.19950/j.cnki.CN61-1121/TH.2024.02.016]
 GUAN Weijun,ZHOU Yuan,WANG Aihua,et al.Application research of micro water sensor based on quartz enhanced photoacoustic spectroscopy technology in power system[J].Industrial Instrumentation & Automation,2024,(02):91-96.[doi:DOI:10.19950/j.cnki.CN61-1121/TH.2024.02.016]
点击复制

基于石英增强光声光谱技术的微水传感器在电力系统中的应用研究(PDF)

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2024年02期
页码:
91-96
栏目:
出版日期:
2024-04-15

文章信息/Info

Title:
Application research of micro water sensor based on quartz enhanced photoacoustic spectroscopy technology in power system
文章编号:
1000-0682(2024)02-0091-06
作者:
关卫军周 苑王爱华边松岩
(陕西省计量科学研究院, 陕西 西安 710100)
Author(s):
GUAN WeijunZHOU YuanWANG Aihua BIAN Songyan
(Shaanxi Institute of Metrology,Shaanxi Xi’an 710100,China)
关键词:
石英增强光声光谱痕量气体传感器湿度传感器
Keywords:
quartz enhanced photoacoustic spectroscopy trace gas sensor humidity sensor
分类号:
TP212
DOI:
DOI:10.19950/j.cnki.CN61-1121/TH.2024.02.016
文献标志码:
B
摘要:
在SF6气体绝缘高压气体电力系统中,H2O是一种很难去除且有危害的杂质,它不仅会降低绝缘性能,还会产生酸性气体分解物,腐蚀破坏电气设备,造成SF6气体泄漏,对人身和环境造成严重的安全隐患。该文利用近红外商用分布式反馈(DFB)二极管激光器,研制了一种在SF6缓冲气体中,基于石英增强光声光谱(QEPAS)技术的亚ppm级水汽传感器系统。由于SF6的物理常数与N2或空气有很大差异,裸石英音叉(QTF)的谐振频率和Q因子分别为32 763 Hz和4173。通过对声微谐振器(AmR)参数、气体压力和调制深度进行实验优化,检测时间为1 s,检测限为0.49 ppm,为电力系统安全监测提供了有力的预防工具。
Abstract:
In SF6 insulated high-voltage gas power systems, H2O is the most problematic impurity which not only decreases insulation performance but also creates an acidic atmosphere that promotes corrosion. Corrosion damages electrical equipment and leads to leaks, which pose serious safety hazards to people and the environment. A QEPAS-based sensor system for the sub-ppm level H2O detection in SF6 buffer gas was developed by use of a near-infrared commercial Distributed Feedback(DFB )diode laser. Since the specific physical constants of SF6 are strongly different from that of N2 or air, the resonant frequency and Q-factor of the bare quartz tuning fork (QTF) had changed to 32,763 Hz and 4173, respectively. After the experimental optimization of acoustic micro-resonator (AmR) parameters, gas pressures, and modulation depths, a detection limit of 0.49 ppm was achieved for an averaging time of 1 s, which provided a powerful prevention tool for the safety monitoring in power systems.

参考文献/References:

[1]SPAGNOLO V , PATIMISCO P , BORRI S ,et al.Part-per-trillion level detection of SF6 using a single-mode fiber-coupled quantum cascade laser and a quartz enhanced photoacoustic sensor[J].International Society for Optics and Photonics, 2013.

[2]KURTE R , BEYER C , HEISE H ,et al.Application of infrared spectroscopy to monitoring gas insulated high-voltage equipment: electrode material-dependent SF6 decomposition[J].Analytical & Bioanalytical Chemistry, 2002, 373(7):639.?/div>
[3]YIN X , DONG L , WU H ,et al.Ppb-level H2S detection for SF6 decomposition based on a fiber-amplified telecommunication diode laser and a background-gas-induced high-Q photoacoustic cell[J].Applied Physics Letters, 2017, 111(3):1200.
[4]MAISS M, BRENNINKMEIJER C.Atmospheric SF6: Trends, Sources, and Prospects[J].Environmental Science & Technology, 1998.
[5]RUYUE C , LEI D , HONGPENG W ,et al.Calculation model of dense spot pattern multi-pass cells based on a spherical mirror aberration[J].Optics letters, 44(5):1108-1111.
[6]DUFFOUR E.Molecular dynamic simulations of the collision between copper ions, SF6 molecules and a polyethylene surface: A study of decomposition products and an evaluation of the self‐diffusion coefficients[J].Macromolecular Theory & Simulations, 2010, 19(3):88-99.
[7]REN M, WANG S, ZHOU J,et al. Multispectral detection of partial discharge in SF6 gas with silicon photomultiplier-based sensor array[J].Sensors and Actuators, A. Physical, 2018, 283:113-122.
[8]YIN X, DONG L, WU H,et al.Highly sensitive SO2 photoacoustic sensor for SF6 decomposition detection using a compact mW-level diode-pumped solid-state laser emitting at 303 nm[J].Optics Express, 2017, 25(26):32581-32590.
[9]SAMPAOLO A, PATIMISCO P, GIGLIOi M, et al.Highly sensitive gas leak detector based on a quartz-enhanced photoacoustic SF6 sensor[J].Optics Express, 2016, 24(14):15872-15881.
[10]SUN B, ZIFARELLI A, WU H,et al.Mid-infrared quartz-enhanced photoacoustic sensor for ppb-level CO detection in a SF6 gas matrix exploiting a T-grooved quartz tuning fork[J].Analytical Chemistry, 2020, 92(20): 13922–13929.
[11]YIN X, WU H, DONG L, et al.Ppb-level photoacoustic sensor system for saturation-free CO detection of SF6 decomposition by use of a 10 W fiber-amplified near-infrared diode laser[J].Sensors and Actuators B: Chemical, 2019, 282:567-573.?/div>
[12]WANG P, CHEN W, WANG J, et al.Multigas analysis by cavity-enhanced raman spectroscopy for power transformer diagnosis[J]. Analytical Chemistry ,2020,92:5969-5977.?/div>
[13]WAN F, ZHOU F, HU J,et al.Highly sensitive and precise analysis of SF6 decomposition component CO by multi-comb optical-feedback cavity enhanced absorption spectroscopy with a 2.3μm diode laser.[J].Scientific reports, 2019, 9(1):9690.
[14]KURTE R, HEISE H, KLOCKOW D.Quantitative infrared spectroscopic analysis of SF6 decomposition products obtained by electrical partial discharges and sparks using PLS-calibrations - ScienceDirect[J].Journal of Molecular Structure, 2001, s 565–566(2):505-513.
[15]FU Y, YANG A, WANG X,et al.Theoretical study of the neutral decomposition of SF6 in the presence of H2O and O2 in discharges in power equipment.[J].Journal of Physics: D Applied Physics, 2016.
[16]YIN X, DONG L, WU H, et al.Highly sensitive photoacoustic multicomponent gas sensor for SF6 decomposition online monitoring[J].Optics Express, 2019,27: A224-A234.
[17]SCHMID T. Photoacoustic spectroscopy for process analysis[J].Analytical and Bioanalytical Chemistry,2006,384:1071-1086.
[18]RUSSO S, SAMPAOLO A, PATIMISCO P,et al.Quartz-enhanced photoacoustic spectroscopy exploiting low-frequency tuning forks as a tool to measure the vibrational relaxation rate in gas species[J].Photoacoustics, 2021, 21:100227.
[19]MIKLOS A, HESS P, BOZOKI Z. Application of acoustic resonators in photoacoustic trace gas analysis and metrology[J].Review of Scientific Instruments, 2001, 72(4):1937-1955.
[20]CAO Y, LIU Q, WANG R, et al.Development of a 443 nm diode laser-based differential photoacoustic spectrometer for simultaneous measurements of aerosol absorption and NO2[J].Photoacoustics, 2021.
[21]CHEN K, YANG B, GUO M, et al.Fiber-optic photoacoustic gas sensor with temperature self-compensation[J].Optics Letters, 2020, 45(8): 2458-2461.
[22]PATIMISCO P , SCAMARCIO G , TITTEL F K ,et al.Quartz-Enhanced Photoacoustic Spectroscopy: A Review[J].Sensors, 2014, 14(4):6165-6206.
[23]YIN X, WU H, DONG L, et al. Ppb-level SO2 photoacoustic sensors with a suppressed absorption–desorption effect by using a 7.41 μm external-cavity quantum cascade laser[J]. ACS Sensors,2020,5:549-556.
[24]MA Y, LEWICKI R, RAZEGHI M, et al, QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL[J]. Optics Express, 2013,21 : 1008-1019.
[25]YIN X, GAO M, MIAO R, et al, Near-infrared laser photoacoustic gas sensor for simultaneous detection of CO and H2S, Optics Express[J]. 2021,29:34258-34268.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2023-10-16第一作者:关卫军(1980—),男,陕西西安人,工程硕士,高级工程师,研究方向为仪器仪表工程、计量检定校准。E-mail:9932876@qq.com
更新日期/Last Update: 1900-01-01