|本期目录/Table of Contents|

[1]寇为刚,谭等泰.基于EEMD和小波包分解在滚动轴承故障信息提取中的分析对比[J].工业仪表与自动化装置,2015,(04):101-104.
 KOU Weigang,TAN Dengtai.Analysis of extracting the fault information about rolling bearings based on EEMD and WPD[J].Industrial Instrumentation & Automation,2015,(04):101-104.
点击复制

基于EEMD和小波包分解在滚动轴承故障信息提取中的分析对比(PDF)

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2015年04期
页码:
101-104
栏目:
出版日期:
2015-08-15

文章信息/Info

Title:
Analysis of extracting the fault information about rolling bearings based on EEMD and WPD
文章编号:
1000-0682(2015)04-0000-00
作者:
寇为刚谭等泰
(甘肃政法学院 公安技术学院,兰州 730070)
Author(s):
KOU Weigang TAN Dengtai
(Public Security Technology Institute, Gansu Political Science and Law Institute, Lanzhou 730070,China)
关键词:
滚动轴承经验模态分解小波包分解特征提取
Keywords:
rolling bearings EEMD WPD feature extraction
分类号:
TP206.3
DOI:
-
文献标志码:
A
摘要:
由于滚动轴承故障存在很强的调制性,导致检测十分困难,而总体经验模态分解能有效解调信号。所以,将其应用到滚动轴承故障提取中,并分析了各个模态中不同的故障成分,并与小波包方法进行对比,说明EEMD在滚动轴承故障检测中更具一定的优势,最后通过采用实验平台的故障轴承数据对其进行了分析,说明EEMD在轴承故障检测中的价值。
Abstract:
It is very difficult for the fault signal of rolling bearing element to extract the fault frequencies because the fault signal is modulated and the background noise is very strong. However the rolling bearings’ fault signal is demodulated by using ensemble empirical mode decomposition (EEMD), so this method is important for detecting the fault features of rolling bearings. But to contrast wavelet packet decomposition (WPD) and EEMD, we have proved that the EEMD method is better than WPD method in detecting the fault characteristics of rolling bearings element.

参考文献/References:

[1] 韩清凯,于晓光.基于振动分析的现代机械故障诊断原理及应用[M].北京:科学出版社,2010.

[2] 潘峥嵘,谯自健,张宁,戴芮.基于互相关的有效奇异值消噪方法[J].计算机工程与应用,2015
[3] 马宁,周则明,罗立民.基于方向小波变换的自适应图像去噪方法[J].计算机工程,2012, 38(14):0184-0186.
[4] 张震,马驷良,谭琨.基于方向小波变换的高斯噪声图像恢复方法[J].吉林大学学报:理学版,2010,48(6):987-994.
[5] 王贞俭,曲长文,沙秀艳.基于方向小波的差值滤波图像去噪算法[J].系统仿真学报,2007,19(9):2127-2130.
[6] 蔡艳平,李艾华,石林锁.基于EMD与谱峭度的滚动轴承故障检测改进包络谱分析[J].振动与冲击,2011,30(2): 167-172.
[7] 郭明威,倪世宏,朱家海.基于EMD-HMM的BIT间歇故障识别[J].振动、测试与诊断,2012,3 2(3):467-470.
8] 谯自健,张岩,杨智刚.一种旋转机械振动信号的有效消噪方法[J].测控技术,2015,32(7): 185-190.
[9] 吕建新,关虎胜,田杰.EEMD的非平稳信号降噪及其故障诊断应用[J].计算机工程与应用,2011,47(28):223-227.
[10] http://www.eecs.case.edu/laboratory/bearing/download_fan.htlm.
[11] PAN Zheng-rong, QIAO Zi-jian, LIN Zhe. Feature extraction based on improved SVD de-noising and spectral kurtosis in early fault diagnosis of rolling element bearings [C]. 5th International Symposium on Test Automation & Instrumentation (ISTAI’2014),2014(5):146-156.

相似文献/References:

[1]韩 龙,等.基于EEMD和多元多尺度熵的风力发电机组滚动轴承故障特征提取[J].工业仪表与自动化装置,2016,(01):23.
 HAN Long,LI Chengwei,WANGli,et al.Feature extraction of rolling bearing for wind generator based on EEMD and Multivariate Multiscale Entropy[J].Industrial Instrumentation & Automation,2016,(04):23.
[2]张远绪,程换新.基于改进的RBF神经网络的滚动轴承故障诊断[J].工业仪表与自动化装置,2018,(06):31.[doi:1000-0682(2018)06-0000-00]
 ZHANG Yuanxu,CHENG Huanxin.Fault diagnosis of rolling bearing based on improved RBF neural network[J].Industrial Instrumentation & Automation,2018,(04):31.[doi:1000-0682(2018)06-0000-00]
[3]李贵红,赵丽丽,杜 昕,等.基于EMD和香农熵的刀具磨损故障诊断系统开发[J].工业仪表与自动化装置,2019,(02):114.[doi:1000-0682(2019)02-0000-00]
 LI Guihong,ZHAO Lili,DU Xin,et al.Development of tools wearing fault diagnosis system based on EMD and Shannon[J].Industrial Instrumentation & Automation,2019,(04):114.[doi:1000-0682(2019)02-0000-00]
[4]周泓光,吴 林,朱宏刚,等.基于改进的Hilbert-Huang变换电力系统闪变研究方法[J].工业仪表与自动化装置,2020,(03):3.[doi:1000-0682(2020)03-0000-00]
 ZHOU Hongguang,WU Lin,ZHU Honggang,et al.Voltage flicker measurement method based on improved Hilbert-Huang transform in power system[J].Industrial Instrumentation & Automation,2020,(04):3.[doi:1000-0682(2020)03-0000-00]

备注/Memo

备注/Memo:
收稿日期:2014-11-18
作者简介:寇为刚(1986),男,陕西咸阳人,2012年获兰州理工大学控制理论与控制工程专业硕士学位,现为甘肃政法学院助教,主要研究领域为智能仪器仪表。

更新日期/Last Update: 1900-01-01