|本期目录/Table of Contents|

[1]刘 俊.基于搜寻者优化算法的PID神经网络解耦控制[J].工业仪表与自动化装置,2015,(05):97.
 LIU Jun.PID neural network decoupling control based on seeker optimization algorithm[J].Industrial Instrumentation & Automation,2015,(05):97.
点击复制

基于搜寻者优化算法的PID神经网络解耦控制(PDF)

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2015年05期
页码:
97
栏目:
出版日期:
2015-10-15

文章信息/Info

Title:
PID neural network decoupling control based on seeker optimization algorithm
文章编号:
1000-0682(2015)05-0000-00
作者:
刘 俊
(商洛学院 电子信息与电气工程学院,陕西 商洛 726000)
Author(s):
LIU Jun
(Electronic Information and Electrical Engineering College,Shangluo University, Shaanxi Shangluo 726000,China)
关键词:
搜寻者优化算法PID解耦控制神经网络
Keywords:
seeker optimization algorithm PID decoupling control neural network
分类号:
TP183
DOI:
-
文献标志码:
A
摘要:
传统的PID神经网络,由于初始权值随机选择,权值学习采用BP算法,所以容易陷入局部极值,进而导致该方法无法得到高精度控制结果。该文提出采用搜寻者优化算法优化PID神经网络初始权值,再把最优初始权值带入PID神经网络,实现解耦控制。对一个耦合系统进行仿真实验。结果表明,与目前控制效果较好的粒子群算法优化PID神经网络相比,该算法收敛速度更快、稳态误差更小,同时也具有良好的自适应和抗干扰能力,能够实现快速、高精度、稳定的解耦控制。
Abstract:
Traditional PID neural network, in which initial weights are randomly selected and weight learning method uses BP algorithm, tends to fall into local extremum, so the method cannot get precise control. Seeker optimization algorithm(SOA) is adopted to optimize the initial weights of PID neural network, and the decoupling control is realized by putting the optimal initial weights into PID neural network. A coupling system is simulated, and the result shows that, compared with PID neural network which is based on particle swarm algorithm(PSO), PID neural network which is based on SOA(SOA-PIDNN) shares better control effect and smaller steady-state error; moreover, SOA-PIDNN is endowed with adaptive and anti-interference ability, which facilitate rapid, accurate and stable decoupling control.

参考文献/References:

[1] 舒怀林.PID神经元网络对强解耦合带时延多变量系统的解耦控制[J].控制理论与应用,1998,15(6):920-924.

[2] 黄剑平.基于BP神经网络的PID控制研究[J].计算机仿真,2010,27(7):167-170.
[3] 朱林,吴冬雪,赵倩.多变量耦合系统PID神经网络控制方法研究[J].制造业自动化,2014,36(2):125-128.
[4] 周西峰,林莹莹,郭前岗.基于粒子群算法的PID神经网络解耦控制[J].计算机技术与发展,2013,23(9):158-161.
[5] 俞凯耀,席东民.人工鱼群算法优化的PID神经网络解耦控制[J].计算机仿真,2014,31(10):350-353.
[6] Dai Chaohua, Zhu Yunfang, Chen Weirong. Seeker optimization algorithm[C].Guangzhou: Inter. Conf. Computational Intelligence and Security,2006,1:225-229.
[7] 戴朝华.搜寻者优化算法及其应用研究[D].成都:西南交通大学,2009:37-41.
[8] Shi Y, Eberhart R. A modified particle swarm optimizer[C]. In. IEEE World Congress on Computational Intelligence. 1998.69-73.

相似文献/References:

[1]刘海旗,何军红.基于AVR单片机的红外导航无人船的设计与实现[J].工业仪表与自动化装置,2015,(04):47.
 LIU Haiqi,HE Junhong.Design and implementation of?infrared navigation unmanned?ship based on AVR[J].Industrial Instrumentation & Automation,2015,(05):47.
[2]梁雪慧,闫粉粉,邵晓龙.模糊自整定PID在四旋翼飞行器姿态控制中的应用[J].工业仪表与自动化装置,2015,(06):23.
 LIANG Xuehui,YAN Fenfen,SHAOo Xiaolong.An application of a fuzzy self-tuning PID controller in quadrotor attitude control[J].Industrial Instrumentation & Automation,2015,(05):23.
[3]胥 良,郭 林,梁 亚,等.基于模糊RBF神经网络的智能PID控制[J].工业仪表与自动化装置,2015,(06):67.
 XU Liang,GUO Lin,LIANG Ya,et al.Study on intelligent PID control based on fuzzy RBF neural network[J].Industrial Instrumentation & Automation,2015,(05):67.
[4]汝翰霖,李长录,孙铭阳,等.矿用膜分离制氮机温度控制的实现[J].工业仪表与自动化装置,2016,(01):106.
 RU Hanlin,LI Changlu,SUN Mingyang,et al.The realization of temperature control for coal mine film separation and preparation[J].Industrial Instrumentation & Automation,2016,(05):106.
[5]蒲建波,彭晓乐,尹彦东,等.倒立摆控制方法的比较研究[J].工业仪表与自动化装置,2016,(02):11.
 PU Jianbo,PENG Xiaole,YIN Yandong,et al.Comparative study on control method of inverted pendulum[J].Industrial Instrumentation & Automation,2016,(05):11.
[6]江选东.基于西门子PLC的HNx中氢气含量PID级联闭环控制[J].工业仪表与自动化装置,2016,(04):92.
 JIANG Xuandong.The PID cascade closed-loop control of H2 content in HNx based on Siemens PLC[J].Industrial Instrumentation & Automation,2016,(05):92.
[7]孙欢欢,莫岳平,马 瑞,等.基于组态王的水箱液位PID控制设计[J].工业仪表与自动化装置,2016,(04):102.
 SUN Huanhuan,MO Yueping,MA Rui,et al.Design of water tank level PID control based on kingview[J].Industrial Instrumentation & Automation,2016,(05):102.
[8]秦红波.PID控制在卷取温度控制中的应用[J].工业仪表与自动化装置,2016,(06):95.
 QIN Hongbo.Application of PID control to coiling temperature control system[J].Industrial Instrumentation & Automation,2016,(05):95.
[9]胡文权,朱成杰,孔德玉.基于ARM7电网无功补偿的研究[J].工业仪表与自动化装置,2017,(01):115.
 HU Wenquan,ZHU Chengjie,KONG Deyu.A Study of Reactive Power Compensation Based on ARM7[J].Industrial Instrumentation & Automation,2017,(05):115.
[10]李巍巍,张海彪,王光辉,等.基于蚁群算法的倒立摆系统PID控制器设计[J].工业仪表与自动化装置,2018,(03):55.[doi:1000-0682(2018)03-0000-00]
 LI Weiwei,ZHANG Haibiao,WANG Guanghui,et al.Design of inverted pendulum PID controller based on ant colony algorithm[J].Industrial Instrumentation & Automation,2018,(05):55.[doi:1000-0682(2018)03-0000-00]

备注/Memo

备注/Memo:

收稿日期 2015-02-05

作者简介 :刘俊( 1986 ),男,山西省大同市人,硕士研究生,讲师,主要研究智能控制和智能算法。

更新日期/Last Update: 1900-01-01