参考文献/References:
[1] Suykens J A K, Van Gestel T, Jos De Brabanter. Least Squares Support Vector Machines [M]. World Scientific Press, 2002.
[2] Vapnik V . The Nature of Statistical Learning Theory [M] .New York: Springer Verlag , 1995: 181 - 197
[3] B Sch?lkopf, A Smola, K R Müller. Nonlinear component analysis as a kernel eigenvalue problem[J].Neural Computation (S0899-7667), 1998, 10(5): 1299-1319.
[4] L J Cao, K S Chua, W K Chong, et al. A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine [J]. NeuroComputing (S0925-2312), 2003, 55(1): 321-336.
[5] Suykens J, Barbanter J De , Lukas L , et al. Weighted least squares support vector ma chines: Robustness and sparse approxima ti on[J].Neuro computing, 2002,48(1-4):85-105.
[6] 郑小霞,钱锋. 基于PCA和最小二乘支持向量机的软测量建模[J].系统仿真学报,2006.
[7] Lee J M, Yoo C, Choi S W, et al. Non-linear process monitoring using kernel principal component analysis[J]. Chemical Engineering Science,2004,59(1):223-224.
[8] Sun X D,Zhu H Q,Yang Z B,et al,Nonlinear modeling of bearingless permanent magnet synchronous motors with least aquares support vector machines[J].Control Theory &Applications,2012,29(4):524-528.
相似文献/References: