|本期目录/Table of Contents|

[1]张卫峰,惠俊军,张合新.非线性滤波方法及其在故障诊断中的应用[J].工业仪表与自动化装置,2017,(01):20-25.
 ZHANG Weifeng,HUI Junjun,ZHANG Hexin.Non-linear Filtering Method and Its Application in Fault Diagnosis[J].Industrial Instrumentation & Automation,2017,(01):20-25.
点击复制

非线性滤波方法及其在故障诊断中的应用

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2017年01期
页码:
20-25
栏目:
出版日期:
2017-02-15

文章信息/Info

Title:
Non-linear Filtering Method and Its Application in Fault Diagnosis
文章编号:
1000-0682(2017)01-0000-00
作者:
张卫峰1惠俊军23张合新2?
(1.兰州工业学院 土木工程学院,甘肃 兰州 730050;2.第二炮兵工程大学 自动化系,西安 710025;3.?陕西省宝鸡市150信箱11分箱,陕西 宝鸡 721013)
Author(s):
ZHANG Weifeng1 HUI Junjun23 ZHANG Hexin2?
(1.Lanzhou Institute of Technology,Gansu Lanzhou 730050,China;2.Department of Automation,The Second Artillery Engineering university,Xi’an 710025,China;3.?Mailbox 150 extension 11,Shanxi Baoji 721013,China)
关键词:
非线性状态估计扩展卡尔曼滤波Unscented卡尔曼滤波粒子滤波
Keywords:
nonlinear state estimationextended Kalman filter(EKF)Unscented Kalman filter(UKF) particle filter(PF)
分类号:
V271.4;TN713
DOI:
-
文献标志码:
A
摘要:
传统的滤波方法一般基于线性化和高斯假设,在一定程度上影响了滤波精度和非线性系统故障诊断的准确率。该文从“近似非线性”和“近似概率”的方法入手,分析3种常用的非线性滤波算法:扩展卡尔曼滤波器、Unscented卡尔曼滤波器以及粒子滤波器的原理、方法及特点并介绍其在非线性故障诊断中的应用。
Abstract:
Traditional filtering methods are generally based on linearization or Gaussian hypothesis,which may influence the filtering precision and lead to low diagnosis precision to a certain extent. In this paper, from “approximate nonlinearity” and “approximate probability”, the principles, methods, characteristics of three widely used methods for estimation of nonlinear system, i.e., Extended Kalman Filter(EKF),Unscented Kalman Filter(UKF),and Particle Filter(PF) are analyzed, and finally the application in fault diagnosis are introduced.

参考文献/References:

[1] Maybeck P S. Stochastic models estimation and control [M]. New York: Academic,1982. [2] 潘泉.一类非线性滤波器——UKF综述[J].控制与决策, 2005(5): [3] 叶亮,杨峰,潘泉.状态估计中的采样型滤波器[J].计算机工程与应用,2005(3):70-72. [4] Jdier S J, Uhlmann J K, Durrant-Whyte H F. A new approach for filtering nonlinear systems[J]. American Control Conference,1995(3):1628-1632. [5] Julier S J, Uhlmann J, Durrant-Whyte H F. A new method for the nonlinear transformation of means and covariances in filters and estimators[J].IEEE Transaction on Automatic Control,2000,45(3):477-482. [6] 周菊华.UKF滤波方法在捷联惯导系统中的应用研究[D].南京:东南大学,2009 :21-22. [7] GORDON N J,SALMOND D J,SMITH A F M.Novel approach to nonlinear/nonlinear-Gaussian Bayesian state estimation[J].Proceedings of the Institute of Electrical Engineers,1993,140(2):107-113. [8] Doucet A,Freitas N d,Gordon N.Sequential Monte Carlo in practice:Springer-Verlag,2001. [9] 胡士强,敬忠良.粒子滤波算法综述[J].控制与决策, 2005,20(4): 361-365. [10] Arulampalam M S, Maskell S, Gordon N, Clapp T. A tutorial on particle filters for online nonlinear/non- Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing,2002,50(2):174-188. [11] 葛哲学,滤波方法及其在非线性系统故障诊断中的应用研究[D],国防科学技术大学,2006. [12] Zhe C. Bayesian Filtering:From Kalman Filters to Particle Filters, and Beyond,2002. [13] 周东华,叶银忠.现代故障诊断与容错控制[M].北京:清华大学出版社,2000. [14] 张育林,李东旭.动态系统故障诊断理论与应用[M].长沙:国防科技大学出版社,1997. [15] 周东华,孙优贤.控制系统的故障检测与诊断技术[M].北京:清华大学出版社,1994. [16] Chang C T,Chen J W.Implementation issues concerning the EKF-based fault diagnosis techniques[J].Chemical Engineering Science,1995,50(18): 2861-2882. [17] Chang C T,Hwang J I.Simplification techniques for EKF computations in fault diagnosis:model decomposition[J]. AIChE Journal,1998,44(6):1392-1403. [18] Gobbo D D,Napolitano M,Famouri P. Experimental application of extended Kalman filtering for sensor validation[J].IEEE Transactions On Control Systems Technology,2001,9(2):376-380. [19] Watanabe K,Himmelblau DM.Incipient fault diagnosis of nonlinear processes with multiple causes of faults[J]. Chemical Engineering Science,1984,39(3):491-508. [20] Nyberg M,Stutte T.Model based diagnosis of the air path of an automotive diesel engine[J].Control Engineering Practice,2004,12(5):513-525. [21] Wan EA,Merwe Rvd.The unscented kalman filter,2000. [22] Kim J-S,Shin H-J,Shin D-R.Nonlinear multiuser parameters estimation by the scaled unscented filter in CDMA systems[J]. 2004(l):342-346. [23] 葛哲学,杨拥民.强跟踪UKF方法及其在故障辨识中的应用[J].仪器仪表学报, 29(8): [24] Vaswani N.Bound on errors in particle filtering with incorrect model assumptions and its implication for change detection.IEEE International Conference on Acoustics,Speech and signal processing,2004. [25] Azimi-Sadjadi B,krishnaprasad P S.Change detection for nonlinear systems;A particle filtering approach,2004(5): 4074-4079. [26] Li P,Kadirkamanathan V.Fault detection and isolation in non-linear stochastic systems-A combined adaptive Monte Carlo filtering and likelihood ratio approach[J]. International Journal of Control,2004,77(12):1101-1114. [27] 萧德云,莫以为.基于混合系统状态估计的故障诊断[J].自动化学报,2004,30(6):980-985. [28] 莫以为,萧德云.基于进化粒子滤波器的混合系统故障诊断[J].控制与决策,2004,19(6):611-615. [29] 张柏,陈敏泽,周东华.一种非线性非高斯随机系统的故障诊断方法[J].控制工程,2005(12):163-166. [30] 胡昌华,张琪.强跟踪粒子滤波算法及其在故障预报中的应用[J].自动化学报,2008(12):

相似文献/References:

[1]张治涛,曾 静*.基于EKF与UKF的乙苯化工过程状态估计性能评估[J].工业仪表与自动化装置,2021,(06):52.[doi:10.19950/j.cnki.cn61-1121/th.2021.06.010]
 ZHANG Zhitao,ZENG Jing*.Performance evaluation of ethylbenzene chemical process state estimation based on EKF and UKF[J].Industrial Instrumentation & Automation,2021,(01):52.[doi:10.19950/j.cnki.cn61-1121/th.2021.06.010]

备注/Memo

备注/Memo:
?收稿日期:2016-10-08 作者简介:张卫峰(1977),男,陕西长安人,硕士研究生,从事自动控制理论教学与研究.
更新日期/Last Update: 1900-01-01