|本期目录/Table of Contents|

[1]李 珣,刘 瑶,周 健,等.基于改进遗传算法的交通信号配时优化模型[J].工业仪表与自动化装置,2017,(04):125-130.
 LI Xun,LIU Yao,ZHOU Jian,et al.An optimization model of traffic signal cooperative timing based on improved GA[J].Industrial Instrumentation & Automation,2017,(04):125-130.
点击复制

基于改进遗传算法的交通信号配时优化模型

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2017年04期
页码:
125-130
栏目:
出版日期:
2017-08-15

文章信息/Info

Title:
An optimization model of traffic signal cooperative timing based on improved GA
文章编号:
1000-0682(2017)04-0000-00
作者:
李 珣刘 瑶周 健刘 薇洪 良
(西安工程大学 电子信息学院,西安 710048)
Author(s):
LI Xun LIU Yao ZHOU Jian LIU Wei HONG Liang
(College of Electronic and Information, Xi’an Polytechnic University, Xi’an 710048,China)
关键词:
交通工程遗传算法交通信号配时元胞传输模型
Keywords:
traffic engineering genetic algorithm traffic signal timing cellular transport model
分类号:
TP495.1
DOI:
-
文献标志码:
A
摘要:
针对当前交叉口信号配时方案相互孤立,未能有效达到区域交通控制最优化的问题,提出一种面向多交叉口信号控制方案的优化配时模型。文章分析了多交叉口交通流特征,利用元胞传输模型作为基础模型对多交叉口间受控的交通流进行模拟;根据多交叉口路网中影响交通量的被控参数特征,以及交通信号控制准确性、实时性等需求的分析,提出改进的遗传算法;最后,结合DISCO交叉口数值模拟软件,对文中模型进行了数值模拟。数值模拟结果表明:文中模型能够通过配时调节适应交叉口间交通流的变化,道路车辆平均延迟时间较其他方案较小,是一种实际配时控制器可采用的优化模型。
Abstract:
This paper proposed an optimized timing model for multi-intersection signal control, aiming at the problem of urban multi-intersection signal timing can’t control regional traffic optimized. We used cellular transport model to simulate and analyze the multi-intersecting traffic flow. The Classical Genetic Algorithm had been improved, according to the characteristics of the controlled parameters, and analyzed the accuracy and real-time of the traffic signal control. Finally, the model was simulated combined with DISCO simulation software. The numerical simulation results show that: the model can adjust the traffic flow by adjusting the timing, and the road vehicle density is smaller than other schemes, it is an optimization model that can be used in the actual time controller.

参考文献/References:

[1] 黄辉先.城市交通信号优化控制方法的研究[D]. 西北工业大学博士学位论文. 2000. 5.

[2] 史忠科,曲仕茹,黄辉先,等.交通控制系统导论[M].北京:科学出版社,2003.
[3] 孔祥杰.城市路网交通流协调控制技术研究[D]. 浙江大学,2009.
[4] Daganzo C F. The cell transmission model:A dynamic representation of highway traffic consistent with the hydrodynamic theory[J]. Transportation Research Part B Methodological, 1994, 28(4):269-287.
[5] Lo H K. A Novel Traffic Signal Control Formulation [J].Transportation Research Part A,1999,33(6):433-448.
[6] Lo H K, Chow A H F.Control Strategies for Oversaturated Traffic[J].Journal of Transportation Engineering,2004, 130(4): 466 - 478.
[7] Daganzo C F.The cell transmission model part II: network traffic[J].Transportation Research Part B:Methodological, 1995,29(2):79-93.
[8] 尚华艳,黄海军,高自友.基于元胞传输模型的实时交通信息设计[J].北京航空航天大学学报,2008(2):243-238.
[9] 杨晓光,赵靖,马万经,等.信号控制交叉口通行能力计算方法研究综述[J].中国公路学报,2014(5):150-156.
[10] 王正武,罗大庸,黄中祥.基于CTM的信号优化设计及求解[J].交通运输工程学报,2007(4):84-89.
[11] Xun LI, Shiru QU, Lei CAI. Studing of PID Parameter Optimization Method for Attitude Controller of Quadrotor UAVs[J]. Journal of Computational Information Systems. 2014,10(18): 7805-7812.

相似文献/References:

[1]刘若涵,赵振民,赵 杰.基于神经网络与遗传算法的悬臂式掘进机智能控制系统[J].工业仪表与自动化装置,2014,(06):67.
 LIU Ruohan,ZHAO Zhenmin,ZHAO Jie.The boom-type roadheader intelligent control system based on neural network and genetic algorithms[J].Industrial Instrumentation & Automation,2014,(04):67.
[2]梁书立,冯渭春.空间机械手模型参数在轨标定方法研究[J].工业仪表与自动化装置,2017,(02):3.
 LIANG Shuli,FENG Weichun.Research on the on-orbit calibration of space manipulator model parameter[J].Industrial Instrumentation & Automation,2017,(04):3.
[3]王江荣,白保琦.基于GA-BP算法的混凝土抗压强度指标筛选[J].工业仪表与自动化装置,2017,(06):10.[doi:1000-0682(2017)06-0010-05]
 WANG Jiangrong,BAI Baoqi.Selection of concrete compressive strength index based on GA-BP algorithm[J].Industrial Instrumentation & Automation,2017,(04):10.[doi:1000-0682(2017)06-0010-05]
[4]刘洪玮.遗传算法在模糊PID交流电机矢量控制系统中的应用[J].工业仪表与自动化装置,2018,(01):120.[doi:1000-0682(2018)01-0000-00]
 LIU Hongwei.Application of algorithm genetic in fuzzy PID vector control system of AC motor[J].Industrial Instrumentation & Automation,2018,(04):120.[doi:1000-0682(2018)01-0000-00]
[5]郭松林,王光辉.基于人工蜂群算法优化采煤机伺服系统PID参数[J].工业仪表与自动化装置,2018,(02):29.[doi:1000-0682(2018)02-0000-00]
 GUO Songlin,WANG Guanghui.Optimization of PID parameters of hydraulic servo system based on artificial bee colony algorithm[J].Industrial Instrumentation & Automation,2018,(04):29.[doi:1000-0682(2018)02-0000-00]
[6]臧春华,张帅杰,苏宝玉.基于最小二乘辨识模型的PID自整定应用研究[J].工业仪表与自动化装置,2021,(05):67.[doi:10.19950/j.cnki.cn61-1121/th.2021.05.015]
 ZANG Chunhua,ZHANG Shuaijie,SU Baoyu.Application research of PID auto-tuning based on least squares identification model[J].Industrial Instrumentation & Automation,2021,(04):67.[doi:10.19950/j.cnki.cn61-1121/th.2021.05.015]
[7]曲晓峰,陈光伟.基于改进支持向量机的抽水蓄能发电机转子绕组接地故障检测方法[J].工业仪表与自动化装置,2023,(01):97.[doi:10.19950/j.cnki.cn61-1121/th.2023.01.019]
 QU Xiaofeng,CHEN Guangwei.Ground fault detection method of pumped storage generator rotor winding based on improved support vector machine[J].Industrial Instrumentation & Automation,2023,(04):97.[doi:10.19950/j.cnki.cn61-1121/th.2023.01.019]
[8]何强鉴,赵 刚,水 星,等.基于GA-SVM优化算法的扒渣机器人逆运动学求解研究[J].工业仪表与自动化装置,2023,(06):64.[doi:DOI:10.19950/j.cnki.cn61-1121/th.2023.06.011]
 HE Qiangjian,ZHAO Gang,SHUI Xing,et al.Inverse kinematics of slag raking robot based on GA-SVM optimization algorithm solving research[J].Industrial Instrumentation & Automation,2023,(04):64.[doi:DOI:10.19950/j.cnki.cn61-1121/th.2023.06.011]
[9]王凯雄.基于遗传改进神经网络的煤矿井下传感器非线性校正方法[J].工业仪表与自动化装置,2024,(04):114.[doi:DOI:10.19950/j.cnki.cn61-1121/th.2024.04.022]
 WANG Kaixiong.A nonlinear correction method for coal mine underground sensors based on genetic improved neural network[J].Industrial Instrumentation & Automation,2024,(04):114.[doi:DOI:10.19950/j.cnki.cn61-1121/th.2024.04.022]

备注/Memo

备注/Memo:
收稿日期:2017-05-22
基金项目:陕西省自然科学基础研究计划项目(2016JQ5106);西安工程大学博士科研启动基金项目(BS1507);陕西省教育厅专项科研项目(16JK1342)
作者简介:李珣(1981),男,陕西子长人,博士,讲师,研究方向为智能硬件,交通图像检测。
更新日期/Last Update: 1900-01-01