|本期目录/Table of Contents|

[1]刘演华a,赵雪怡a,刘小峰b.双峰分布颗粒系统在平板边界层流动中的演化研究[J].工业仪表与自动化装置,2018,(02):3-7.[doi:1000-0682(2018)02-0003-00]
 LIU Yanhuaa,ZHAO Xueyia,LIU Xiaofengb.Research on the evolution of a bimodal particle system in the flat-plate boundary layer[J].Industrial Instrumentation & Automation,2018,(02):3-7.[doi:1000-0682(2018)02-0003-00]
点击复制

双峰分布颗粒系统在平板边界层流动中的演化研究

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2018年02期
页码:
3-7
栏目:
出版日期:
2018-04-15

文章信息/Info

Title:
Research on the evolution of a bimodal particle system in the flat-plate boundary layer
作者:
刘演华a赵雪怡a刘小峰b
河海大学 a. 机电工程学院;b. 物联网工程学院,江苏 常州 213022
Author(s):
LIU Yanhuaa ZHAO Xueyia LIU Xiaofengb
a.College of Mechanical and Electrical Engineering;b.School of Internet of Things Engineering,Hohai University,Jiangsu Changzhou 213022,China
关键词:
双峰分布颗粒系统平板边界层二元泰勒展开矩量法
Keywords:
bimodal distribution granule system flat-plate boundary layer BTEMOM
分类号:
O357.5+2
DOI:
1000-0682(2018)02-0003-00
文献标志码:
A
摘要:
该文研究了平板边界层中的双峰谱分布颗粒系统的演变过程。用层流平板边界层的解析解(Blasius解)来给出流场分布。对于颗粒相,利用了一种新的矩方法模型,即二元泰勒展开矩量法(BTEMOM),描述对流、扩散和凝并等动力学过程。验证了新模型对双峰颗粒系统的效率和精度。在边界层的强剪切作用下,最终研究了特征参数如数密度、标准偏差以及几何体积。
Abstract:
In this paper,the evolution of the bimodal particle system in a flat-plate boundary layer is studied.The flow field distribution is given by the Blasius solution.For the particle phase,a new method of moment,namely binary Taylor expansion method of moments(BTEMOM), was utilized to describe the dynamic processes such as:advection,diffusion and coagulation.The efficiency and accuracy of the new model to the bimodal particle system are verified. Under the strong shearing effect of the boundary layer,the characteristic parameters such as the number density,the standard deviation,and the geometric volume are finally studied.

参考文献/References:

[1] Tang H, J Z Lin. Research on bimodal particle extinction coefficient during Brownian coagulation and condensation for the entire particle size regime[J].Journal of Nanoparticle Research,2011,13(12):7229-7245.

[2] Friedlander,S K Smoke,dust,et al. Fundamentals of aerosol dynamics[M].2nd editioned. Oxford: Oxford University Press, Inc. 2000.
[3] Wang J, E K Levy. Particle motions and distributions in turbulent boundary layer of air-particle flow past a vertical flat plate[J]. Experimental Thermal And Fluid Science,2003, 27(8): 845-853.
[4] Wood C R. An Overview of the Urban Boundary Layer Atmosphere Network In Helsinki[J].Bulletin of the American Meteorological Society,2013,94(11):1675-1690.
[5] Lonati G. Daily patterns of the multi-modal structure of the particle number size distribution in Milan, Italy[J]. Atmospheric Environment,2011,45(14): 2434-2442.
[6] Jeong J I, M Choi. A simple bimodal model for the evolution of non-spherical particles undergoing nucleation, coagulation and coalescence[J].Journal Of Aerosol Science, 2003,34(8):965-976.
[7] Jeong J I, M Choi. A bimodal moment model for the simulation of particle growth[J].Journal of Aerosol Science, 2004,35(9):1071-1090.
[8] Jeong J I, M Choi. A bimodal particle dynamics model considering coagulation, coalescence and surface growth, and its application to the growth of titania aggregates[J]. Journal of Colloid and Interface Science, 2005,281(2): 351-359.
[9] Diemer R B, J H Olson. A moment methodology for coagulation and breakage problems: Part 2-Moment models and distribution reconstruction[J].Chemical Engineering Science,2002,57(12):2211-2228.
[10] Pratsinis S E.SImultaneous nucleation, condensation, and coagulation in aerosol reactors[J]. Journal of Colloid and Interface Science,1988,124(2):416-427.
[11] McGraw R,S Nemesure,S E Schwartz.Properties and evolution of aerosols with size distributions having identical moments[J].Journal of Aerosol Science,1998,29(7):761-772.
[12] Yu MZ, JZ Lin, T L Chan. A new moment method for solving the coagulation equation for particles in Brownian motion[J].Aerosol Science and Technology,2008,42(9): 705-713.
[13] Yu M Z, J Z Lin. Taylor-expansion moment method for agglomerate coagulation due to Brownian motion in the entire size regime[J].Journal of Aerosol Science,2009,40(6): 549-562.
[14] Liu YH, Yin ZQ. A New Method of Moments for the Bimodal Particle System in the Stokes Regime[J].Abstract and Applied Analysis, 2013:840218.
[15] Liu Y H, H Gu. The Taylor-expansion Method of Moments for the Partile System with Bimodal Distribution[J]. Thermal Science,2013(17):1542-1545.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2017-11-29
基金项目:中国国家自然科学基金项目(11302070);江苏省基础研究基金(自然科学基金)资助(BK20141153);中央高校基本科研基金资助(2012B05314);江苏省重点研发计划(社会发展)项目资助(SBE2017740553)
作者简介:刘演华,男,江苏常州人,副教授,主要研究方向为微纳米动力学及其应用。
更新日期/Last Update: 2018-04-15