|本期目录/Table of Contents|

[1]王 辉a,洪 波b.马尔科夫决策过程在移动端云存储策略中的应用[J].工业仪表与自动化装置,2018,(06):117-121.[doi:1000-0682(2018)06-0000-00]
 WANG Huia,HONG Bob.Application of Markov decision process in scheduling the cloud?storage?strategy[J].Industrial Instrumentation & Automation,2018,(06):117-121.[doi:1000-0682(2018)06-0000-00]
点击复制

马尔科夫决策过程在移动端云存储策略中的应用

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2018年06期
页码:
117-121
栏目:
出版日期:
2018-12-15

文章信息/Info

Title:
Application of Markov decision process in scheduling the cloud?storage?strategy
作者:
王 辉a洪 波b
西安工业大学 a. 计算机科学与工程学院;b. 继续教育学院,西安 710201
Author(s):
WANG Huia HONG Bob
a. School of Computer Science and Engineering; b.Department of?InformationTechnology, Xi’an Technological University, Xi’an 710021, China
关键词:
马尔科夫存储状态云存储策略存储代价决策理论状态转移
Keywords:
Markovstorage status cloud?storage strategy storage cost decision-making theory state transition
分类号:
U416.01
DOI:
1000-0682(2018)06-0000-00
文献标志码:
A
摘要:
针对传统移动端云存储系统数据量急剧增加时对存储效率产生严重影响的实际情况,从理论上对移动端云存储的存储状态进行分析,提出了一种基于马尔科夫的移动端云存储策略,该策略以节点存储代价的量化描述为基础,引入马尔科夫决策理论并结合存储节点的状态转移,选择最优存储节点实现移动端云存储访问。通过仿真实验对该存储策略进行了验证,仿真结果表明,当数据大小发生改变时,该存储策略能够准确预测并将数据实时调度到合适的存储组机群的存储节点上,有效降低因数据大小不同而导致存储效率降低的影响。
Abstract:
For the actual situation that has a significant impact on storage efficiency when the data volume in traditional mobile terminal cloud storage system increases sharply.The storage status of mobile terminal cloud storage is analyzed in theoretically.A mobile terminal cloud storage strategy based on markov is proposed.The strategy is based on quantitative description of the cost of the storage node. Markov decision theory is introduced and the state transfer of storage nodes is combined to select the optimal storage node to realize mobile terminal cloud storage access.To verify the cloud storage strategy through simulation,simulation results show that when the data size changes, this cloud storage strategy can predicte accurately,and the data will be stored to the appropriate node in the storage group machine in real time. The strategy can reduce the influence of storage efficiency effectively which is caused by different data size.

参考文献/References:

[1] 张迪,朱立谷,侯振宇,等.基于WEB的移动端云存储技术研究[J].计算机工程与应用,2010,46(36):66.

[2] Iliadis I, Sotnikov D, Ta-Shma P, et al. Reliability of geo replicated Cloud storage systems[C].In: 2014 IEEE 20th Pacific Rim International Symposium on Dependable Computing, 2014:169.
[3] 徐婧,杨寿保,王淑玲,等.CDRS:云存储中一种代价驱动的自适应副本策略[J].中国科学院研究生院学报,2011, 8(6): 759.
[4] 冯登国,张敏,张妍,等.云计算安全研究[J].软件学报, 2011,22( 01) : 71.
[5] 牛德华,马建峰,马卓,等.基于属性的安全增强云存储访问控制方案[J].通信学报,2013,34( Z1) :56.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2018-03-15
基金项目:陕西省科学技术厅重点研发项目(2016KTZDGY4-09);陕西高等教育教学改革研究项目(17JY015);西安工业大学校长基金(XGYXJJ-0528);新型网络与检测控制国家地方联合工程实验室基金项目(GSYSJ2017007)
作者简介:王辉(1975),女,西安工业大学计算机与工程学院讲师,主要研究方向为SDN,云计算,网络安全,网络协议与分析。
更新日期/Last Update: 2018-12-15