|本期目录/Table of Contents|

[1]单 蓉a,b,李 涛.基于支持向量机的移动无线传感器网络可靠性研究[J].工业仪表与自动化装置,2018,(06):70-72.[doi:1000-0682(2018)06-0000-00]
 SHAN Ronga.b,LI Tao.Research on reliability of mobile wireless sensor networks based on support vector machines[J].Industrial Instrumentation & Automation,2018,(06):70-72.[doi:1000-0682(2018)06-0000-00]
点击复制

基于支持向量机的移动无线传感器网络可靠性研究

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2018年06期
页码:
70-72
栏目:
出版日期:
2018-12-15

文章信息/Info

Title:
Research on reliability of mobile wireless sensor networks based on support vector machines
作者:
单 蓉1ab李 涛2
1.渭南师范学院 a.网络安全与信息化工程技术中心;b.网络安全与信息化工程技术中心;
2.渭南供电局信息通信公司,陕西 渭南714000
Author(s):
SHAN Rong1a.b LI Tao2
1a. Engineering Technology Center of Network Security and Informatization; b. Engineering Technology Center of Network Security and Informatization,Weinan Normal University;
2.Weinan Power Supply Company, Shaanxi Weinan 714000,China
关键词:
移动无线传感器网络支持向量机可靠性
Keywords:
mobile wireless sensor networks support vector machines reliability
分类号:
TN929.5;TP212.9
DOI:
1000-0682(2018)06-0000-00
文献标志码:
A
摘要:
移动无线传感器网络是在传统的静态无线传感器网络基础上加入了节点的移动性。由于节点的移动性,导致网络拓扑的变化和信号强弱的变化,从而对网络服务质量的可靠性提出了更高的要求。该文运用支持向量机算法,对移动无线传感器网络中的故障进行识别,并且快速定位故障节点,从而为及时解决网络故障提供了保障,提高了网络的可靠性。
Abstract:
Based on traditional static wireless sensor networks, mobile wireless sensor networks add mobility to their nodes. Due to the mobility of nodes, the network topology often changes and the network signal strength changes, thus the higher reliability of network quality of service is required. In this paper, the support vector machine (SVM) algorithm is used to identify the faults in mobile wireless sensor networks, which can quickly locate the fault nodes, so as to provide guarantee for the timely solution of network failures and improve the reliability of the network.

参考文献/References:

[1] 姚仲敏,荆宝刚,孙彩苹.基于移动无线传感器网络的植株图像监测系统设计与测试[J].农业工程学报,2016, 32(11): 189-196.

[2] 毛万东,岳文振,俞能海.一种用于移动无线传感器网络的新型节点定位算法[J].数据通信,2014(2):15-19.
[3] Savkin A V, Javed F, Matveev A S. Optimal Distributed Blanket Coverage Self-Deployment of Mobile Wireless Sensor Networks[J]. IEEE Communications Letters, 2012, 16(6):949-951.
[4] 凡高娟,郭拯危.无线传感器网络节点部署研究进展[J].传感器与微系统,2012,31(4):1-3.
[5] Fang W. Comment on Robust Cooperative Routing Protocol in Mobile Wireless Sensor Networks’[J]. IEEE Transactions on Wireless Communications,2013,12(8): 4222-4223.

相似文献/References:

[1]吴文昭.基于GMM聚类的鲁棒性i向量说话人确认[J].工业仪表与自动化装置,2017,(04):55.
 WU Wenzhao.Speaker verification robust speaker recognition based on i-vector and GMM clustering[J].Industrial Instrumentation & Automation,2017,(06):55.
[2]王江荣,白保琦.基于GA-BP算法的混凝土抗压强度指标筛选[J].工业仪表与自动化装置,2017,(06):10.[doi:1000-0682(2017)06-0010-05]
 WANG Jiangrong,BAI Baoqi.Selection of concrete compressive strength index based on GA-BP algorithm[J].Industrial Instrumentation & Automation,2017,(06):10.[doi:1000-0682(2017)06-0010-05]
[3]李贵红,赵丽丽,杜 昕,等.基于EMD和香农熵的刀具磨损故障诊断系统开发[J].工业仪表与自动化装置,2019,(02):114.[doi:1000-0682(2019)02-0000-00]
 LI Guihong,ZHAO Lili,DU Xin,et al.Development of tools wearing fault diagnosis system based on EMD and Shannon[J].Industrial Instrumentation & Automation,2019,(06):114.[doi:1000-0682(2019)02-0000-00]
[4]秦小刚,杨风允,王文祥,等.基于振动监测和支持向量机的海洋石油离心泵智能预警技术研究[J].工业仪表与自动化装置,2022,(01):101.[doi:10.19950/j.cnki.cn61-1121/th.2022.01.021]
 QIN Xiaogang,YANG Fengyun,WANG Wenxiang,et al.Research on intelligent early warning technology of offshore centrifugal pump based on vibration monitoring and support vector machine[J].Industrial Instrumentation & Automation,2022,(06):101.[doi:10.19950/j.cnki.cn61-1121/th.2022.01.021]
[5]陈龙龙,李 凌.基于机器学习的湿化仪温度预测建模与仿真[J].工业仪表与自动化装置,2022,(02):56.[doi:10.19950/j.cnki.cn61-1121/th.2022.02.012]
 CHEN Longlong,LI Ling.Modeling and Simulation of temperature prediction of humidifier based on machine learning[J].Industrial Instrumentation & Automation,2022,(06):56.[doi:10.19950/j.cnki.cn61-1121/th.2022.02.012]
[6]曲晓峰,陈光伟.基于改进支持向量机的抽水蓄能发电机转子绕组接地故障检测方法[J].工业仪表与自动化装置,2023,(01):97.[doi:10.19950/j.cnki.cn61-1121/th.2023.01.019]
 QU Xiaofeng,CHEN Guangwei.Ground fault detection method of pumped storage generator rotor winding based on improved support vector machine[J].Industrial Instrumentation & Automation,2023,(06):97.[doi:10.19950/j.cnki.cn61-1121/th.2023.01.019]
[7]何强鉴,赵 刚,水 星,等.基于GA-SVM优化算法的扒渣机器人逆运动学求解研究[J].工业仪表与自动化装置,2023,(06):64.[doi:DOI:10.19950/j.cnki.cn61-1121/th.2023.06.011]
 HE Qiangjian,ZHAO Gang,SHUI Xing,et al.Inverse kinematics of slag raking robot based on GA-SVM optimization algorithm solving research[J].Industrial Instrumentation & Automation,2023,(06):64.[doi:DOI:10.19950/j.cnki.cn61-1121/th.2023.06.011]

备注/Memo

备注/Memo:
收稿日期:2018-06-05
基金项目:渭南师范学院校级项目“文本挖掘中云模型的应用研究”(17YKP08)
作者简介:单蓉(1978),女,甘肃古浪人,硕士,副教授,研究方向为计算机网络。
更新日期/Last Update: 2018-12-15