|本期目录/Table of Contents|

[1]刘 军,田 甜.基于改进联邦滤波算法的组合导航系统的应用[J].工业仪表与自动化装置,2019,(02):68-71.[doi:1000-0682(2019)02-0000-00]
 LIU Jun,TIAN Tian.The application in integrated navigation system based on adaptive federated filtering algorithm[J].Industrial Instrumentation & Automation,2019,(02):68-71.[doi:1000-0682(2019)02-0000-00]
点击复制

基于改进联邦滤波算法的组合导航系统的应用

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2019年02期
页码:
68-71
栏目:
出版日期:
2019-04-15

文章信息/Info

Title:
The application in integrated navigation system based on adaptive federated filtering algorithm
作者:
刘 军田 甜
青岛科技大学 自动化与电子工程学院,山东 青岛 266042
Author(s):
LIU JunTIAN Tian
College of Automation and Electrical Engineering, Qingdao University of Science and Technology, Shandong Qingdao 266042, China)
关键词:
组合导航信息融合自适应联邦滤波量测噪声协方差阵
Keywords:
integrated navigation information fusionadaptive federated filter measurement noise covariance matrix
分类号:
TP391.8
DOI:
1000-0682(2019)02-0000-00
文献标志码:
A
摘要:
针对组合导航系统中联邦滤波信息融合算法在滤波精度和容错性能等方面存在的不足,提出了一种基于以捷联惯导系统(SINS)为公共主系统,全球定位系统(GPS)和多普勒测速系统(DVL)为辅助子系统的改进联邦滤波算法的组合导航系统。介绍了卡尔曼滤波原理与信息融合算法的特点,基于联邦滤波器的组合形式详细阐述了联邦滤波器设计步骤,将改进量测噪声协方差阵的自适应联邦滤波器应用到SINS/GPS/DVL组合导航系统中,并对此系统进行了MATLAB仿真。仿真结果表明,相较于标准联邦滤波器算法,该文设计的基于改进量测噪声协方差阵的自适应联邦滤波器能明显提高组合导航系统的滤波精度和可靠性。
Abstract:
Aiming at the shortcomings of the generalized filtering information fusion algorithm in the integrated navigation system in terms of filtering accuracy and fault tolerance, a method based on the Strapdown Inertial Navigation System(SINS), Global Positioning System(GPS) and Doppler Velocity Log is proposed. The Least Speed System(DVL) is an integrated navigation system with an improved filtering algorithm for the auxiliary subsystem. The characteristics of Kalman filter principle and information fusion algorithm are introduced. The federated filter design steps are elaborated based on the combination of federated filters. The adaptive federated filter with improved measurement noise covariance matrix is applied to SINS/GPS/DVL. In the integrated navigation system, the system was simulated by MATLAB,and results show that compared with the standard federated filter algorithm, the adaptive federated filter based on improved measurement noise covariance matrix can significantly improve the filtering accuracy and reliability of the integrated navigation system.

参考文献/References:

[1] 秦永元,张洪钺,汪叔华.卡尔曼滤波与组合导航系统[M].西安:西安工业大学出版社,2015.

[2] Carlson N A.Fedeated filter for fault-tolerant integrated navigation systems[C]. Orlando,FL: Proc.of IEEE PLANS 88, 1988:110-119
.[3] 王其,徐晓苏.多传感器信息融合技术在水下组合导航系统中的应用[J].中国惯性技术学报,2007(06):667-672.
[4] 卢航,郝顺义,沈飞,等.基于融合状态递推的非线性联邦滤波器故障检测算法[J].航天控制,2018,36(02):88-92.
[5] 杨常松,徐晓苏,汪丽云,等.信息融合技术在INS/GPS/ DVL组合导航中的应用研究[J].中国惯性技术学报, 2006(05):39-43.
[6] 卢海曦,周百令.自适应联邦滤波器及其在组合导航系统中的应用[J].中国惯性技术学报,2007,12(15):25-26.
[7] Yingyao Kang, Liu Zhao, Jianhua Cheng. A novle grid SINS/DVL integrated navigation algorithm for Marine Application[J].Sensors,2018,364(18):13-14.
[8] 王其,杨常松.联邦卡尔曼滤波在水下航行器组合导航系统中的应用[J].南京信息工程大学学报(自然科学版), 2010,2(02):133-137.
[9] 袁克非.组合导航系统多源信息融合关键技术研究[D]. 哈尔滨:哈尔滨工程大学,2012.
[10] 潘学松.基于SINS/DVL/GPS的AUV组合导航系统关键技术研究[D].中国海洋大学,2011.
[11] 吕建新,周翟和,伏家杰,等.自适应联邦卡尔曼滤波在机器人组合导航系统中的应用研究[J].测控技术,2017, 36(06):15-19.

相似文献/References:

[1]张卫峰,惠俊军.智能故障诊断技术的现状及展望[J].工业仪表与自动化装置,2017,(05):21.
 ZHANG Weifeng,HUI Junjun.The present situation and prospects of intelligence fault diagnosis technology[J].Industrial Instrumentation & Automation,2017,(02):21.

备注/Memo

备注/Memo:
收稿日期:2018-08-03
作者简介:刘军(1960),男,博士,硕士生导师,研究方向为复杂系统建模与控制,太阳能、风能发电与并网调度。
更新日期/Last Update: 2019-04-15