|本期目录/Table of Contents|

[1]杨金波,许宝立,王 艳.内置式永磁同步电机驱动系统设计[J].工业仪表与自动化装置,2019,(03):33-39.[doi:1000-0682(2019)03-0000-00]
 YANG Jinbo,XU Baoli,WANG Yan.Design of drive system for interior permanent magnet synchronous motor[J].Industrial Instrumentation & Automation,2019,(03):33-39.[doi:1000-0682(2019)03-0000-00]
点击复制

内置式永磁同步电机驱动系统设计

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2019年03期
页码:
33-39
栏目:
出版日期:
2019-06-15

文章信息/Info

Title:
Design of drive system for interior permanent magnet synchronous motor
作者:
杨金波许宝立王 艳
北京航天发射技术研究所,北京 100076
Author(s):
YANG Jinbo XU Baoli WANG Yan
Beijing Institute of Space Launch Technology, Beijing 100076, China
关键词:
内置式永磁同步电机控制驱动
Keywords:
interior permanent magnet synchronous motor(IPMSM) control drive
分类号:
TM301.2
DOI:
1000-0682(2019)03-0000-00
文献标志码:
A
摘要:
基于内置式永磁同步电机(Interior Permanent Magnet Synchronous Motor, IPMSM)在两相旋转坐标系下的数学模型,结合电压电流约束条件,分析了最大转矩电流比(Maximum Torque Per Ampere, MTPA)控制策略和弱磁控制策略,确定了车用IPMSM的转矩控制方案。设计了以DSP为核心的硬件电路,开发了矢量控制软件,实现了模拟量采集、位置检测、参数管理和通信等功能,完成了IPMSM矢量控制运算。在电机实验台架上对驱动系统性能进行了测试,实验结果表明,该驱动系统能够对IPMSM进行有效地转矩控制,充分发挥电机的转矩输出能力,提高系统运行效率,满足电驱动车辆的使用要求。
Abstract:
According to the mathematic model of interior permanent magnet synchronous motor (IPMSM) on the two-phase rotating coordinate system,maximum torque per ampere(MTPA) control and field-weakening control were analyzed with the voltage and current restriction conditions.Torque control strategy for IPMSM was determined.Hardware and software were designed for IPMSM drive system.Analog signal acquisition, position detection,parameter management,communication and so on were realized and vector control calculation was carried out.The performance of the drive system was tested on an experiment system.The experiment results show that the torque can be controlled effectively and the drive can take full advantage of output torque of IPMSM.The system has high efficiency and can satisfy the requirement of electric vehicle.

参考文献/References:

[1] 柴海波,焉治国,况明伟,等.电动车驱动电机发展现状[J].微特电机,2013,41(4):52-57.

[2] 温旭辉.电动汽车电机驱动技术现状与发展综述[J].电力电子,2013(2):5-9.
[3] 唐朝晖,丁强,喻寿益,等.内埋式永磁同步电机的弱磁控制策略[J].电机与控制学报,2010,14(5):68-72.
[4] G Pellegrino, A Vagati, P Guglielmi, et al. Performance Comparison Between Surface-Mounted and Interior PM Motor Drives for Electric Vehicle Application[J].IEEE Transactions on Industrial Electronics,2011,59(2): 803-811.
[5] 吴芳.内置式永磁同步电机最大转矩电流比控制策略研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2013: 1-3.
[6] 陈坤华,孙玉坤,吉敬华,等.基速以下内嵌式永磁同步电动机控制策略研究[J].微特电机,2014,42(2):50-52.
[7] 白玉成,唐小琦,吴公平.内置式永磁同步电机弱磁调速控制[J].电工技术学报,2011,26(9):54-59.
[8] 康劲松,薛梦觉.电动汽车IPMSM弱磁控制技术[J].电气自动化,2014,36(1):30-33.
[9] Dongyun Lu, Narayan C Kar. A Review of Flux- Weakening Control in Permanent Magnet Synchronous Machines[C].2010 IEEE Vehicle Power andPropulsion Conference,2010:1-6.
[10] 王秀和.永磁电机[M].2版.北京:中国电力出版社,2011: 290-316.

相似文献/References:

[1]王 浩.动态刻度显示数字压力表[J].工业仪表与自动化装置,2014,(06):102.
 WANG Hao.The dynamic scale display digital pressure gauge[J].Industrial Instrumentation & Automation,2014,(03):102.
[2]康红明,贾春凤,李 伟,等.基于PLC的液位和温度控制系统设计[J].工业仪表与自动化装置,2015,(06):45.
 KANG Hongming,JIA Chunfeng,LI Wei,et al.The design of water level and temperature control system based on PLC[J].Industrial Instrumentation & Automation,2015,(03):45.
[3]万莉,郑明明,万勇.防喷器试压系统数据采集和控制电路的设计[J].工业仪表与自动化装置,2016,(03):52.
 WAN Li,ZHENG Ming-ming,WAN Yong.Design of Data Acquisition and Control Circuit for Blowout Preventer Pressure Test System[J].Industrial Instrumentation & Automation,2016,(03):52.
[4]蒋红梅,李战明,唐伟强.基于递阶结构的变风量空调自动控制系统设计[J].工业仪表与自动化装置,2016,(03):78.
 JIANG Hongmei,LI Zhanming,TANG Weiqiang.Design of the variable air volume air conditioning control system based on hierarchical structure[J].Industrial Instrumentation & Automation,2016,(03):78.
[5]杨少鹏,高志强,张 敏,等.热电厂化学制水系统DCS改造研究[J].工业仪表与自动化装置,2018,(06):82.[doi:1000-0682(2018)06-0000-00]
 YANG Shaopeng,GAO Zhiqiang,ZHANG Min,et al.Research on DCS transformation of chemical water system in thermal power plant[J].Industrial Instrumentation & Automation,2018,(03):82.[doi:1000-0682(2018)06-0000-00]
[6]张胜华,陈忠华,鄢红章,等.看板透视化管理在智能工厂中的应用研究[J].工业仪表与自动化装置,2020,(01):38.
 ZHANG Shenghua,CHEN Zhonghua,YAN Hongzhang,et al.Research on the application of kanban perspective management in intelligent factory[J].Industrial Instrumentation & Automation,2020,(03):38.
[7]申建光.环形供热管网水力工况设计方法研究[J].工业仪表与自动化装置,2020,(01):54.
 SHEN Jianguang.Study on hydraulic working condition design method of annular heating network[J].Industrial Instrumentation & Automation,2020,(03):54.
[8]陈春峰,尤晨昱.尿素水解制氨装置仪表选型及控制[J].工业仪表与自动化装置,2020,(01):127.
 CHEN Chunfeng,YOU Chenyu.Selection and control of thermal control equipment for urea hydrolysis ammonia plant[J].Industrial Instrumentation & Automation,2020,(03):127.
[9]刘 辉.基于RBF人工神经网络的变电站无功补偿装置自动化控制方法[J].工业仪表与自动化装置,2021,(06):34.[doi:10.19950/j.cnki.cn61-1121/th.2021.06.007]
 LIU Hui.Automatic control method of reactive power compensation device in Substation based on RBF artificial neural network[J].Industrial Instrumentation & Automation,2021,(03):34.[doi:10.19950/j.cnki.cn61-1121/th.2021.06.007]

备注/Memo

备注/Memo:
收稿日期:2018-09-07
作者简介:杨金波(1982),男,博士,主要研究方向为电机驱动与控制。
更新日期/Last Update: 1900-01-01