参考文献/References:
[1] Kumar K, Parida M. Short term traffic flow prediction in heterogeneous condition using artificial neural network[J]. Transport, 2015,30(4): 397-405.[2] Yang H,Dillon T,Chen Y. Optimized Structure of the Traffic Flow Forecasting Model with a Deep Learning Approach[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(10): 2371–2381.
[3] Voort M,Dougherty M,Watson S. Combining kohonen maps with arima time series models to forecast traffic flow[J]. Transportation Research Part C Emerging Technologies, 1996, 4(5): 307-318.
[4] Edward Y, Zygmunt J. An Algorithm for Prediction of Link Lifetime in MA-NET Based on Unscented Kalm Filter[J]. IEEE Communications Letters, 2009,13(10): 782-784.
[5] Huang W,Song G,Hong H,et al.Deep Architecture for Traffic Flow Prediction: Deep Belief Networks With Multitask Learning[J].IEEE Transactions on Intelligent Transportation Systems, 2014, 15(5): 2191-2201.
[6] 多丽,刘义艳,程绍峰.基于逆传播算法的十字路口交通流预测[J].工业仪表与自动化装置,2017(05): 120-123.
[7] K Chan,T Dillon,J Singh, et al. Neural-Network-Based Models for Short-Term Traffic Flow Forecasting Using a Hybrid Exponential Smoothing and Levenberg-Marquardt Algorithm[J].IEEE Transactions on Intelligent Transportation Systems, 2012(13): 644-654.
[8] Jin Y, Tan E. Hybrid Traffic Forecasting Model With Fusion of Multiple Spatial Toll Collection Data and Remote Micro- wave Sensor Data[J].IEEE Access, 2018(6):79211- 79221.
[9] 罗文慧,董宝田,王泽胜.基于CNN-SVR混合深度学习模型的短时交通流预测[J].交通运输系统工程与信息,2017, (17)5: 69-74.
[10] 王青松,谢兴生,佘颢.基于CNN-XGBoost混合模型的短时交通流预测[J].测控技术,2019,38(4): 37-41.
[11] Chiou H,Ping K.A Deep CNN-LSTM Model for Particulate Matter(PM2.5) Forecasting in Smart Cities[J]. Sensors, 2018(18): 2220-2242.
[12] Zhang D, Kabuka M. Combining weather condition data to predict traffic flow:A GRU-based deep learning approach [J].IET Intelligent Transport Systems,2018,12(7): 578-585.
[13] Lü Y, Duan Y, Kang W, et al. Traffic Flow Prediction With Big Data:A Deep Learning Approach[J].IEEE Transactions on Intelligent Transportation Systems,2015,16(2):865-873.
相似文献/References:
[1]冯宇平,安雪美,李树光.基于情景感知的智能交通CPS研究[J].工业仪表与自动化装置,2017,(05):124.
FENG Yuping,AN Xuemei,LI Shuguang.Research on intelligent transportation CPS based on context-aware[J].Industrial Instrumentation & Automation,2017,(01):124.