|本期目录/Table of Contents|

[1]钱 晨.基于B/S架构的AO曝气风机节能降耗系统设计与实现[J].工业仪表与自动化装置,2020,(05):81-86.[doi:1000-0682(2020)05-0000-00]
 QIAN Chen.Design and implementation of energy saving and consumption reduction system of Ao aeration fan based on B/S architecture[J].Industrial Instrumentation & Automation,2020,(05):81-86.[doi:1000-0682(2020)05-0000-00]
点击复制

基于B/S架构的AO曝气风机节能降耗系统设计与实现

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2020年05期
页码:
81-86
栏目:
出版日期:
2020-10-15

文章信息/Info

Title:
Design and implementation of energy saving and consumption reduction system of Ao aeration fan based on B/S architecture
作者:
钱 晨
光大环保技术研究院(南京)有限公司,南京 210003
Author(s):
QIAN Chen
Everbright Environmental Protection Technology Research Institute (Nanjing) Co., Ltd., Nanjing 210003,China
关键词:
AO曝气风机能耗B/S架构神经网络回归模型Json
Keywords:
AO aeration fans energy consumption B/S architecture neural networks regression model Json
分类号:
X705TP311.5
DOI:
1000-0682(2020)05-0000-00
文献标志码:
A
摘要:
针对AO曝气风机在垃圾渗滤液处理中的能耗问题,该文提出并设计了一套降低AO曝气风机能耗的方法及系统。该系统采用B/S架构并结合神经网络训练出的最优算法模型以及拟合得到的回归模型推算出风机功率,提前作出判断并对风机进行调整,达到精确曝气和稳定水质的效果,同时也降低了设备能耗。该系统前端展示部分采用Jquery+Bootstrap+Highcharts+ACE框架,后端服务部分采用Spring+SpringBoot+MyBatis框架,前后端通过Json数据格式进行交互。系统经过在线测试和现场试运行阶段后,已正式投入使用,并取得良好的效果。
Abstract:
In this paper, a method and system for reducing the energy consumption of AO aeration fans are proposed and designed for the energy consumption of AO aeration fans in landfill leachate treatment. The system adopts the B/S architecture and combines the optimal algorithm model trained by the neural network and the regression model obtained by the fitting to calculate the fan power, make judgments in advance and adjust the fan to achieve the effect of precise aeration and stable water quality. It also reduces equipment energy consumption. The front-end display part of the system adopts the Jquery+Bootstrap+Highcharts+ACE framework, and the back-end service part adopts the Spring+SpringBoot+MyBatis framework, and the front and back ends interact through the Json data format. After the online test and on-site trial operation, the system has been officially put into use and achieved good results.

参考文献/References:

[1] 刘云霞.数据预处理:数据规约的统计方法研究及应用[M].厦门:厦门大学出版社,2011.?div>[2] 刘明吉,王秀峰.数据挖掘中的数据预处理[J]. 计算机科学,2000,27(4):54-57.

[3] 北京市政工程设计研究总院.给水排水设计手册:城镇排水[M].2版.北京:中国建筑工业出版社,2004.
[4] 崔健.高原地区污水处理厂供气量计算探讨[C].北京:全国给水排水技术信息网年会暨技术交流会论文集, 2011:65-70.
[5] 王彩霞,鲁宗相,乔颖,等.基于非参数回归模型的短期风电功率预测[J].电力系统自动化,2010, 34(16):78-82+91.
[6] 李健,张彬文.风机流量软测量建模与误差分析[J].电站系统工程,2015(6):60-62.
[7] 马军建.基于B/S模式的智能水电厂防汛决策支持系统研究[J].水电能源科学, 2013(5):170-172.
[8] 赵多林.基于B/S结构的WEB SCADA系统架构[D].南京:南京理工大学,2006.

相似文献/References:

[1]于凤银,杨 巍,于凤燕.往复活塞式空压机变频控制的技改方法[J].工业仪表与自动化装置,2016,(02):92.
 YU Fengyin,YANG Wei,YU Fengyan.The frequency control of reciprocating piston type air compressor[J].Industrial Instrumentation & Automation,2016,(05):92.

备注/Memo

备注/Memo:
收稿日期:2019-07-30
作者简介:钱晨(1989),男,江苏南京人,硕士,电子工程专业中级职称,研究方向为电气控制,计算机系统软件工程,大数据系统。
更新日期/Last Update: 1900-01-01