|本期目录/Table of Contents|

[1]赵 静,梁瑞娜.人工免疫控制在热工过程的应用与研究[J].工业仪表与自动化装置,2020,(02):85-87.
 ZHAO Jing,LIANG Ruina.Application and research of artificial immune control in thermal process[J].Industrial Instrumentation & Automation,2020,(02):85-87.
点击复制

人工免疫控制在热工过程的应用与研究

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2020年02期
页码:
85-87
栏目:
出版日期:
2020-04-15

文章信息/Info

Title:
Application and research of artificial immune control in thermal process
文章编号:
1000-0682(2020)02-0000-00
作者:
赵 静梁瑞娜
西北工业大学明德学院,西安 710124
Author(s):
ZHAO Jing LIANG Ruina
Northwestern Polytechnical University Ming De College, Xi’an 710124, China
关键词:
热工过程智能控制技术人工免疫遗传算法PID参数
Keywords:
thermal process intelligent control technology artificial immune genetic algorithms PID parameters
分类号:
TP23
DOI:
-
文献标志码:
A
摘要:
热工过程有着明显不同于其他工业过程的特征,由于其内部过程的复杂性,热工过程往往表现出非线性、时延性、不确定性、变量间的关联性以及信息的不完整性,对其建立精确的数学模型十分困难。因此,常规控制难以获得理想的控制效果。现以热工过程中窑炉温度为研究对象,采用智能控制技术,对温度提出一种人工免疫遗传算法,并设计人工免疫遗传算法优化的PID参数,对其控制器进行参数整定实现对窑炉的温度控制,通过MATLAB仿真,结果表明人工免疫遗传算法在热工过程控制具有通用性和实用性。
Abstract:
Thermal process has obvious characteristics different from other industrial processes. Because of the complexity of its internal process,thermal process often shows non-linearity,delay, uncertainty,correlation between variables and incompleteness of information.It is very difficult to establish an accurate mathematical model for thermal process.Therefore,conventional control is difficult to achieve the desired control effect.Taking kiln temperature in thermal process as the research object, an artificial immune genetic algorithm(AIGA) is proposed for temperature control by using intelligent control technology,and the PID parameters optimized by AIGA are designed.The parameters of the controller are tuned to realize the temperature control of kiln.The simulation results by METLAB show that AIGA can control the temperature of kiln.The algorithm is universal and practical in thermal process control.

参考文献/References:

[1] 尚福华,李军,王梅,等.人工智能及其应用[M].北京:石油工业出版社,2005:1-11.

[2] 王耀南,孙炜.智能控制理论及应用[M].北京:机械工业出版社,2008:49-55.
[3] 李萌,沈炯.基于自适应遗传算法的过热汽温PID参数优化控制仿真研究[J].中国电机工程学报,2002,22(8): 145-149.
[4] 潘立登.先进控制与在线优化技术及其应用[M].北京:机械工业出版社,2009:173-181.
[5] 杨献勇.热工过程自动控制[M].北京:清华大学出版社, 2008:389-393.
[6] 蔡自兴.智能控制原理与应用[M].北京:清华大学出版社, 2007:289-291.
[7] 葛志强,屈宝存,李强.模糊免疫PID的Smith预估主气温控制系统[J].计算机仿真,2006,23(6):233-236.
[8] 彭道刚,张浩,杨平,等.基于灰色预测的汽温模糊免疫PID控制[J].中国动力工程学报,2007,27(1):72-75.
[9] Yang Dongdong, Jiao Licheng, Niu Ruican, et al. Investi- gation of combinational clustering indices in artificial im- mune multi-objective clustering[J].Computational Intelli- gence, 2014,30(1):115-144.
[10] De CastroL N. Aritficial Immune Systems: A Novel Computational Intelligence Approach[C].Spirnger- Verlag, 2002.
[11] S Hofmeyr, S Forrest. Architecture for an Artificial Immune System[J]. Evolution-ary Computation, 1999,7(1): 1289-1296.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2019-09-09
基金项目:陕西省教育厅2019年度专项科学研究计划(19JK0870)
作者简介:赵静(1983),女,陕西省西安市人,硕士研究生,讲师,从事智能制造与控制技术教研工作。
更新日期/Last Update: 1900-01-01