|本期目录/Table of Contents|

[1]汪抑非,李 创,柴秋子,等.大型机泵健康监测与诊断系统设计与应用[J].工业仪表与自动化装置,2020,(02):33-36.
 WANG Yifei,LI Chuang,CHAI Qiuzi,et al.Design and application of health monitoring and diagnosis system for large pump[J].Industrial Instrumentation & Automation,2020,(02):33-36.
点击复制

大型机泵健康监测与诊断系统设计与应用

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2020年02期
页码:
33-36
栏目:
出版日期:
2020-04-15

文章信息/Info

Title:
Design and application of health monitoring and diagnosis system for large pump
文章编号:
1000-0682(2020)02-0000-00
作者:
汪抑非1李 创2柴秋子2黄志龙1金肖玲1付 立2
1.浙江大学 航空航天学院;
2.杭州哲达科技股份有限公司,杭州 310012
Author(s):
WANG Yifei1 LI Chuang2 CHAI Qiuzi2 HUANG Zhilong1 JIN Xiaoling1 FU Li2
1.School of Aeronautics and Astronautics, Zhejiang University;?
2.Hangzhou ZETA Technology Co., LTD., Hangzhou 310012, China
关键词:
状态监测故障诊断异常报警大型机泵
Keywords:
condition monitoring fault diagnosis abnormal alarm large pump
分类号:
TP23
DOI:
-
文献标志码:
A
摘要:
该文着重介绍了一种自主研发的大型机泵设备健康监测与诊断系统,该系统具有数据采集、状态监测、异常报警、故障诊断等功能,能够及时、准确地推送设备的运行状态及可能存在的故障隐患,提高检修效率,延长设备寿命。最后以某化工厂为例,简述了该系统在工业领域中的应用。
Abstract:
This paper mainly introduces a health monitoring and diagnosis system about large pump, which is self-developed. The system has the functions of data acquisition, condition monitoring, abnormal alarm and fault diagnosis.It can promptly and accurately send the operation status of equipment and the possible hidden troubles, which improves the maintenance efficiency and prolongs the service life of equipment. Finally, the application of the system in the industrial field is briefly described by taking a chemical plant as an example.

参考文献/References:

[1]杨露露,姚杰,钱依祎.机泵远程在线监测与智能诊断系统设计[J].自动化仪表,2019,40(07):29-32.

[2] 韩清凯,于涛,王德友,等.故障转子系统的非线性振动分析于诊断方法[M].北京:科学出版社, 2010:1-5.
[3] GB10889—89 泵的振动测试与评价方法[S].1989.
[4] 褚东亮.旋转机械故障信号分析及诊断技术研究[D].北京:华北电力大学,2017.
[5] 邓泽怀,刘波波,李彦良.常见的功率谱估计方法及其Matlab仿真[J].电子科技,2014,27(02):50-52.
[6] 宋晓美,孟繁超,张玉.基于包络解调分析的滚动轴承故障诊断研究[J].仪器仪表与分析监测,2012(01):16-19.
[7] 周惠彬,谢小燕,张卫东.概率论与数理统计[M].成都:西南财经大学出版社,2003.
[8] 高洁.基于贝叶斯网络的复杂工业过程故障诊断问题研究[D].杭州:浙江大学,2019.
[9] 周志华.机器学习[M].北京:清华大学出版社,2016: 156-165.
[10] D M Chickering. Learning equivalence classes of Bayesian- network structures[J].Journal of machine learning research, 2002,2(Feb): 445-498.
[11] N Friedman, D Geiger, M Goldszmidt. Bayesian network classifiers[J].Machine learning,1997, 29(2-3):131-163.
[12] Sein Minn,傅顺开,吕天依,等.一般贝叶斯网络分类器及其学习算法[J].计算机应用研究,2016,33(05):1327-1334.

相似文献/References:

[1]尹新权,王 珺,张亚萍.基于模糊理论的柴油机故障诊断专家系统[J].工业仪表与自动化装置,2015,(01):111.
 YIN Xinquan,WANG Jun,ZHANG Yaping.Fault diagnostic expert system of diesel engine based on fuzzy theory[J].Industrial Instrumentation & Automation,2015,(02):111.
[2]孟文俊a,徐光华a,b,等.基于LabVIEW的滚动轴承非平稳过程监测诊断及性能评估系统的开发[J].工业仪表与自动化装置,2015,(02):18.
 MENG Wenjuna,XU Guanghuaa,b,et al.Development of non-stationary process for rolling bearing fault diagnosis and performance evaluation system based on LabVIEW[J].Industrial Instrumentation & Automation,2015,(02):18.
[3]李 茜,王延年.基于普通铣床数控化的S7-300 PLC远程监控和故障诊断系统设计[J].工业仪表与自动化装置,2015,(02):49.
 LI Qian,WANG Yannian.Design of remote monitoring and fault diagnosis systembased on the ordinary milling machine of numerical control of S7-300 PLC[J].Industrial Instrumentation & Automation,2015,(02):49.
[4]巴寅亮,王书提,谢 鑫.基于改进的BP神经网络的柴油发动机故障诊断[J].工业仪表与自动化装置,2015,(03):94.
 BA Yinliang,WANG Shuti,XIE Xin.Research of diesel engine fault based on improved BP neural network[J].Industrial Instrumentation & Automation,2015,(02):94.
[5]王江荣,文 晖,黄建华.基于差分进化算法的二次回归在矿井通风机故障诊断中的应用[J].工业仪表与自动化装置,2015,(01):50.
 WANG Jiangrong,WEN Hui,HUANG Jianhua.The two regression in ventilator fault diagnosis application based on difference evolutionary algorithm[J].Industrial Instrumentation & Automation,2015,(02):50.
[6]李 刚,胡红利*,李亚妮.风力发电机叶片状态监测与故障诊断技术近况[J].工业仪表与自动化装置,2017,(05):16.
 LI Gang,HU Hongli*,LI Ya'ni.Review on recent development of technology of monitoring &diagnosis of wind turbine generator blades[J].Industrial Instrumentation & Automation,2017,(02):16.
[7]张卫峰,惠俊军.智能故障诊断技术的现状及展望[J].工业仪表与自动化装置,2017,(05):21.
 ZHANG Weifeng,HUI Junjun.The present situation and prospects of intelligence fault diagnosis technology[J].Industrial Instrumentation & Automation,2017,(02):21.
[8]宫玮丽,梁 波,王晓兰.基于小波包和Hilbert包络分析的隧道掘进机主轴承故障诊断方法研究[J].工业仪表与自动化装置,2018,(02):15.[doi:1000-0682(2018)02-0000-00]
 GONG Weili,LIANG Bo,WANG Xiaolan.Research on fault diagnosis method of main bearing of tunnel boring machine based on wavelet packet and Hilbert envelope analysis[J].Industrial Instrumentation & Automation,2018,(02):15.[doi:1000-0682(2018)02-0000-00]
[9]席 维,白 璘,武奇生.基于经验小波变换和峭度值的滚动轴承故障检测方法[J].工业仪表与自动化装置,2018,(06):26.[doi:1000-0682(2018)06-0000-00]
 XI Wei,BAI Lin,WU Qisheng.A novel rolling bearing fault detection method based on empirical wavelet transform and kurtosis value[J].Industrial Instrumentation & Automation,2018,(02):26.[doi:1000-0682(2018)06-0000-00]
[10]张远绪,程换新.基于改进的RBF神经网络的滚动轴承故障诊断[J].工业仪表与自动化装置,2018,(06):31.[doi:1000-0682(2018)06-0000-00]
 ZHANG Yuanxu,CHENG Huanxin.Fault diagnosis of rolling bearing based on improved RBF neural network[J].Industrial Instrumentation & Automation,2018,(02):31.[doi:1000-0682(2018)06-0000-00]

备注/Memo

备注/Memo:
收稿日期:2019-09-17
作者简介:汪抑非(1993),浙江衢州人,硕士,研究方向为机械故障诊断。
更新日期/Last Update: 1900-01-01