|本期目录/Table of Contents|

[1]程丽娟,徐立军,胡 兵,等.并网型风电盐水制氢系统的控制[J].工业仪表与自动化装置,2020,(03):29-33.[doi:1000-0682(2020)03-0000-00]
 CHENG Lijuan,XU Lijun,HU Bing,et al.Control of grid-connected wind power brine hydrogen production system[J].Industrial Instrumentation & Automation,2020,(03):29-33.[doi:1000-0682(2020)03-0000-00]
点击复制

并网型风电盐水制氢系统的控制

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2020年03期
页码:
29-33
栏目:
出版日期:
2020-06-15

文章信息/Info

Title:
Control of grid-connected wind power brine hydrogen production system
作者:
程丽娟1徐立军1胡 兵1 何强龙2
1. 新疆工程学院;
2. 新疆兵团兴新职业技术学院,乌鲁木齐 830000
Author(s):
CHENG Lijuan1XU Lijun1HU Bing1HE Qianglong2
1. Xinjiang Engineering College;
2. Xingxin Vocational and Technical College of Xinjiang Corps,Urumchi 830000,China
关键词:
盐水电解槽制氢控制方案滑模控制
Keywords:
salt water electrolytic cell hydrogen production control scheme sliding mode control
分类号:
TK91
DOI:
1000-0682(2020)03-0000-00
文献标志码:
A
摘要:
由于新疆盐碱水资源丰富,使得土地盐碱化也比较严重,因此发展新疆风电-盐水电解制氢并联产盐技术,既可以提高风能利用水平,又可以实现盐碱水资源化、能源化综合利用。该文采用新型电极材料应用到电解槽,构成的宽功率电极电解槽体系产生了全新的V/I特性及功率特性,并针对各部分动力学特性进行研究。控制设计基于滑模技术,尤其是适用于控制快速开关器件,具有较强的鲁棒性。因此,尽管风力和温度不同,氢气生产效率也得到了优化。
Abstract:
Due to the rich saline and alkaline water resources in Xinjiang,the land salinization is also serious.Therefore,the development of Xinjiang wind-brine electrolysis hydrogen production combined with salt production technology can not only improve the utilization level of wind energy,but also realize the comprehensive utilization of saline and alkaline water resources and energy.n this paper,a new electrode material is applied to the electrolytic cell,and the wide power electrode electrolytic cell system generated new V/I characteristics and power characteristics.The control design is based on sliding mode technology,which is especially suitable for controlling fast switching devices and has strong robustness.As a result,hydrogen production efficiency has been optimized despite differences in wind and temperature.

参考文献/References:

[1] 王纯琦,吐尔逊?依不拉音,晁勤.基于Matlab的含风电电网建模与仿真[J].可再生能源,2006(5):61-64.

[2] 李军军,吴政球,谭勋琼,等.风力发电及其技术发展综述[J].电力建设,2011(8):64-72.
[3] 张银山,李梅,赵龙.风电产业发展的金融支持-以新疆哈密风电基地为例调查研究[J].中国金融,2014(9): 69-70.
[4] 严陆光,夏训诚,吴绍勤,等.大力推进新疆大规模综合能源基地的发展(续)[J].电工电能新技术,2011,30(2):1-4.
[5] 包能胜,倪维斗.解决新疆风能资源大规模开发瓶颈的探讨[J].中国能源,2006,28(1):10-28.
[6] 查鲲鹏,高冲,汤广福,等.哈密南-郑州特高压直流输电工程晶闸管阀设计与试验[J].电力建设,2014,35(12): 54-60.
[7] 王华锋,林志光,张海峰,等.±800 kV特高压直流工程换流阀故障分析与优化设计方法[J].高电压技术,2017(1): 67-73.
[8] Pu Y, Li Q, Chen W, et al. Hierarchical energy manage- ment control for islanding DC microgrid with electric- hydrogen hybrid storage system[J].International Journal of Hydrogen Energy,2019,44(11):5153-5161.
[9] Miland H, Glockner R, Taylor P, et al. Load control of a wind-hydrogen stand-alone power system[J]. Internatio- nal Journal of Hydrogen Energy,2006,31(9): 1215-1235.
[10] M Beccali, S Brunone, P Finocchiaro, et al. Method for size optimisation of large wind–hydrogen systems with high penetration on power grids[J].Applied Energy, 2013, 102:534-544.
[11] Jiang Y, Wen B, Wang Y. Optimizing unit capacities for a wind-hydrogen power system of clustered wind farms[J].International Transactions on Electrical Energy Systems,2019(29):27-33.
[12] Tiejiang Yuan,Xiaoshun Dong,Xiangping Chen. Energetic macroscopic representation control method for a hybrid-source energy system including wind, hydrogen, and fuel cell[J].Journal of Renewable and Sustainable Energy, 2018(10):433-440.
[13] Janusz Kotowicz,Daniel W?cel,Micha? Jurczyk.Analysis of component operation in power-to-gas-to-power installations [J]. Applied Energy,2018,216(15):45-59.
[14] Claus J rgensena, Stephanie Ropenus. Production price of hydrogen from grid connected electrolysis in a power market with high wind penetration[J].International Journal of Hydrogen Energy,2008(33):5335–5344.
[15] A Khosravi, R N N Koury, L Machado, et al. Energy and economic analysis of a hybrid renewable energy with hydrogen storage system[J].Energy,2018(148):1087-1102.
[16] K W Harrison, G D Martin, T G Ramsden, et al. The wind to hydrogen project: operational experience, performance testing, and systems integration[R].Washington DC,USA: National Renewable Energy Laboratory, 2009.
[17] 宁楠.水电解制氢装置宽功率波动适应性研究[J].舰船科学技术,2017,39(6):133-136.
[18] Khalilnejad A, Sundararajan A, Sarwat A I. Optimal design of hybrid wind/photovoltaic electrolyzer for maximum hydrogen production using imperialist competitive algorithm[J]. Journal of Modern Power Systems and Clean Energy, 2018,6(1):40-49.
[19] lvaro Serna, Yahyaoui I , Normey-Rico J E, et al. Predictive control for hydrogen production by electrolysis in an offshore platform using renewable energies[J]. International Journal of Hydrogen Energy,2017,42(17): 12865-76.
[20] Ursúa, Alfredo, Barrios E L, Pascual J, et al. Integration of commercial alkaline water electrolysers with renewable energies: Limitations and improvements[J].International Journal of Hydrogen Energy, 2016,41(30):12852-61.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2019-10-12
基金项目:
国家自然科学基金资助项目(51967020);
新疆天山雪松人才项目(2018XS06)
作者简介:程丽娟(1987),甘肃定西人,女,硕士,讲师,研究方向为控制工程、风电-氢能耦合技术。
更新日期/Last Update: 1900-01-01