|本期目录/Table of Contents|

[1]尹春杰,宋彦螟,王亚男,等.光伏发电组件在线监测与故障诊断系统研制[J].工业仪表与自动化装置,2020,(04):122-126.[doi:1000-0682(2020)04-0000-00]
 YIN Chunjie,SONG Yanming,WANG Yanan,et al.Development of online monitoring and fault diagnosis system for photovoltaic power generation module[J].Industrial Instrumentation & Automation,2020,(04):122-126.[doi:1000-0682(2020)04-0000-00]
点击复制

光伏发电组件在线监测与故障诊断系统研制

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2020年04期
页码:
122-126
栏目:
出版日期:
2020-08-15

文章信息/Info

Title:
Development of online monitoring and fault diagnosis system for photovoltaic power generation module
作者:
尹春杰宋彦螟王亚男李鹏飞肖发达
山东建筑大学 信息与电气工程学院,济南 250101
Author(s):
YIN Chunjie SONG Yanming WANG Ya’nan LI Pengfei XIAO Fada
School of Information and Electrical Engineering, Shandong Jianzhu University, Jinan 250101, China
关键词:
关键词:光伏组件故障诊断峰值功率开路电压双线性插值
Keywords:
photovoltaic module fault diagnosis peak power open circuit voltage bilinear interpolation
分类号:
TP277
DOI:
1000-0682(2020)04-0000-00
文献标志码:
A
摘要:
该文提出了基于峰值发电功率估计及最大功率电压估计的光伏组件在线故障诊断方法。以光辐射强度(S)及温度(T)为参变量,依据光伏组件有关出厂技术参数推算出峰值功率Pm(Si,Ti)和开路电压Uoc(Si,Ti)标准值空间分布;采用二维平面分段双线性插值法求取光辐射强度-温度平面内任意点的峰值功率基准值Pm(S,T)及开路电压基准值Uoc(S,T)。以此为基础,引入了最大功率评价系数(KP)和峰值功率电压评价系数(KV),阐述了依据实际KP,KV实现光伏组件在线故障诊断的判定方法。基于智能化光伏组件设想,采用分布式网络系统架构并完成了智能监测终端单元电路设计。该系统具有安装方便、成本低廉、实时性强、灵敏度高等优点。
Abstract:
This paper presents an online fault diagnosis method for photovoltaic modules based on peak power generation estimation and maximum power voltage estimation.The paper uses the optical radiation intensity(S) and temperature(T) as parameters to calculate the spatial distribution of the peak power Pm(Si,Ti) and the open circuit voltage Uoc(Si,Ti) according to the relevant technical parameters of the PV module.The two-dimensional plane-segment bilinear interpolation method is used to obtain the peak power reference value Pm(S,T) and the open circuit voltage reference value Uoc(S,T) at any point in the optical radiation intensity -temperature plane. Based on this,the paper introduces the maximum power evaluation coefficient(KP) and peak power voltage evaluation coefficient(KV),and describes the method for determining the on-line fault diagnosis of photovoltaic modules based on actual KP and KV.Based on the idea of intelligent photovoltaic modules,the paper adopts the distributed network system architecture and completes the intelligent monitoring terminal unit circuit design.The system has the advantages of convenient installation,low cost,strong real-time performance and high sensitivity.

参考文献/References:

[1] 宗宪爽.一种新的光伏阵列故障诊断方法[D]. 吉林:东北电力大学,2018.

[2] 王元章,李智华,吴春华,等.基于BP神经网络的光伏组件在线故障诊断[J].电网技术,2013,37(08):2094-2100.
[3] 王元章,李智华,吴春华.一种四参数的光伏组件在线故障诊断方法[J].中国电机工程学报,2014,34(13): 2078-2087.
[4] 王欢,徐小力.一种新型光伏阵列在线故障检测方法研究[J].仪器仪表学报,2015,36(12):2765-2772.
[5] 高金辉,唐静,贾利锋.太阳能电池参数求解新算法[J].电力系统保护与控制,2012,40(09):133-136.
[6] 陈凌,韩伟,张经炜.基于数据融合的光伏组件故障诊断[J].电网技术,2017,41(06):1864-1873.?div>[7] 韩伟,王宏华,王成亮,等.基于参数辨识的光伏组件故障诊断模型[J].电网技术,2015,39(05):1198-1204.
[8] 任朝阳,曹自平,杨锋.分布式光伏发电检测系统的设计[J].微型机与应用,2015,34(24):60-62.
[9] 周金芝,杨明.基于ARM Cortex-M3光照强度监测系统设计[J].安庆师范大学学报(自然科学版),2018, 24(03): 69-71.

相似文献/References:

[1]尹新权,王 珺,张亚萍.基于模糊理论的柴油机故障诊断专家系统[J].工业仪表与自动化装置,2015,(01):111.
 YIN Xinquan,WANG Jun,ZHANG Yaping.Fault diagnostic expert system of diesel engine based on fuzzy theory[J].Industrial Instrumentation & Automation,2015,(04):111.
[2]孟文俊a,徐光华a,b,等.基于LabVIEW的滚动轴承非平稳过程监测诊断及性能评估系统的开发[J].工业仪表与自动化装置,2015,(02):18.
 MENG Wenjuna,XU Guanghuaa,b,et al.Development of non-stationary process for rolling bearing fault diagnosis and performance evaluation system based on LabVIEW[J].Industrial Instrumentation & Automation,2015,(04):18.
[3]李 茜,王延年.基于普通铣床数控化的S7-300 PLC远程监控和故障诊断系统设计[J].工业仪表与自动化装置,2015,(02):49.
 LI Qian,WANG Yannian.Design of remote monitoring and fault diagnosis systembased on the ordinary milling machine of numerical control of S7-300 PLC[J].Industrial Instrumentation & Automation,2015,(04):49.
[4]巴寅亮,王书提,谢 鑫.基于改进的BP神经网络的柴油发动机故障诊断[J].工业仪表与自动化装置,2015,(03):94.
 BA Yinliang,WANG Shuti,XIE Xin.Research of diesel engine fault based on improved BP neural network[J].Industrial Instrumentation & Automation,2015,(04):94.
[5]王江荣,文 晖,黄建华.基于差分进化算法的二次回归在矿井通风机故障诊断中的应用[J].工业仪表与自动化装置,2015,(01):50.
 WANG Jiangrong,WEN Hui,HUANG Jianhua.The two regression in ventilator fault diagnosis application based on difference evolutionary algorithm[J].Industrial Instrumentation & Automation,2015,(04):50.
[6]张卫峰,惠俊军.智能故障诊断技术的现状及展望[J].工业仪表与自动化装置,2017,(05):21.
 ZHANG Weifeng,HUI Junjun.The present situation and prospects of intelligence fault diagnosis technology[J].Industrial Instrumentation & Automation,2017,(04):21.
[7]宫玮丽,梁 波,王晓兰.基于小波包和Hilbert包络分析的隧道掘进机主轴承故障诊断方法研究[J].工业仪表与自动化装置,2018,(02):15.[doi:1000-0682(2018)02-0000-00]
 GONG Weili,LIANG Bo,WANG Xiaolan.Research on fault diagnosis method of main bearing of tunnel boring machine based on wavelet packet and Hilbert envelope analysis[J].Industrial Instrumentation & Automation,2018,(04):15.[doi:1000-0682(2018)02-0000-00]
[8]席 维,白 璘,武奇生.基于经验小波变换和峭度值的滚动轴承故障检测方法[J].工业仪表与自动化装置,2018,(06):26.[doi:1000-0682(2018)06-0000-00]
 XI Wei,BAI Lin,WU Qisheng.A novel rolling bearing fault detection method based on empirical wavelet transform and kurtosis value[J].Industrial Instrumentation & Automation,2018,(04):26.[doi:1000-0682(2018)06-0000-00]
[9]张远绪,程换新.基于改进的RBF神经网络的滚动轴承故障诊断[J].工业仪表与自动化装置,2018,(06):31.[doi:1000-0682(2018)06-0000-00]
 ZHANG Yuanxu,CHENG Huanxin.Fault diagnosis of rolling bearing based on improved RBF neural network[J].Industrial Instrumentation & Automation,2018,(04):31.[doi:1000-0682(2018)06-0000-00]
[10]郭兰中,彭刘阳,窦 岩,等.基于小波包-AR谱和GA-BP网络的轴承故障诊断研究[J].工业仪表与自动化装置,2019,(03):3.[doi:1000-0682(2019)03-0000-00]
 GUO Lanzhong,PENG Liuyang,DOU Yan,et al.Research on bearing fault diagnosis based on wavelet packet –auto regressive model spectrum and GA-BP neural network[J].Industrial Instrumentation & Automation,2019,(04):3.[doi:1000-0682(2019)03-0000-00]

备注/Memo

备注/Memo:
收稿日期:2019-12-05
基金项目:山东省重点研发计划项目资助(2019GGX103028)
作者简介:尹春杰(1970),副教授,博士,研究方向为智能微电网控制技术、电力电子与电力传动新技术。
更新日期/Last Update: 1900-01-01