参考文献/References:
[1] 李恒,张氢,秦仙蓉,等.基于短时傅里叶变换和卷积神经网络的轴承故障诊断方法[J].振动与冲击,2018, 37(19):124-131.[2] Qu Jinxiu, Zhang Zhousuo, Gong Teng. A novel intelligent method for mechanical fault diagnosis based on dual-tree complex wavelet packet transform and multiple classifier fusion[J].Neurocomputing,2016, 171(C): 837-853.
[3] Xiao Yu, Fei Dong, Ding Enjie, et al. Rolling bearing fault diagnosis using modified LFDA and EMD with sensitive feature selection[J]. IEEE Access, 2018(6): 3715-3730.
[4] 陈俊洵,程龙生,胡绍林,等.基于EMD的改进马田系统的滚动轴承故障诊断[J].振动与冲击,2017,36(05): 151-156.
[5] 张超,陈建军,徐亚兰.基于EMD分解和奇异值差分谱理论的轴承故障诊断方法[J].振动工程学报,2011, 24(05):539-545.
[6] 徐可,陈宗海,张陈斌,等.基于经验模态分解和支持向量机的滚动轴承故障诊断[J].控制理论与应用,2019, 36(06):915-922.
[7] Zhang Wei, Peng Gaoliang, Li Chuanhao, et al. A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals[J]. Sensors,2017, 17(2):425-446.
[8] 陈仁祥,黄鑫,杨黎霞,等.基于卷积神经网络和离散小波变换的滚动轴承故障诊断[J].振动工程学报,2018, 31(05):883-891.
[9] Janssens O, Slavkvikj V, Vervisch B, et al. Convolutional neural network based fault detection for rotating machinery[J].Journal of Sound and Vibration, 2016,377: 331-345.
[10] Hung N S,Wu M C,Long S R, et al. A confidence limit for the empirical mode decomposition and hilbert spectral analysis[J].The Royal Society,2003,459:2317- 2345.
[11] 杨琦,陈智才.基于EMD和相关系数法的列车滚动轴承故障诊断方法研究[J].电力机车与城轨车辆,2018, 41(03):15-17.
[12] 周志华.机器学习[M].北京:清华大学出版社,2016.
相似文献/References: