参考文献/References:
[1] TAX DMJ, DUIN RPW. Support vector domain description[J]. Pattern Recognition Letters, 1999, 20 (11–13): 1191-1199.[2] ATIENCIA R S, WEBER R. Rough-Fuzzy Support Vector Domain Description for outlier detection[C].IEEE International Conference on Fuzzy Systems, Istanbul, Turkey, 2015: 1-6.
[3]张铭钧,吴娟,褚振忠. Multi-fault diagnosis for autonomous underwater vehicle based on fuzzy weighted support vector domain description[J]. China Ocean Engineering, 2014, 28 (5): 599-616.?div>[4] JEONG MK, AN SH,NAM K.SVDD-based financial fraud detection method through respective learnings of normal/abnormal behaviors[J]. International Journal of Security and Its Applications, 2016, 10 (3): 429-437.
[5] LI G, HU Y, CHEN H, et al. A sensor fault detection and diagnosis strategy for screw chiller system using support vector data description-based d-statistic and DV-contribution plots[J].Energy and Buildings, 2016, 133: 230-245.
[6]张敏龙,王涛,王旭平,等.带故障样本的弹性双阈值SVDD在线故障诊断算法及其应用[J].振动工程学报,2016,29(03):555-560.
[7]蔡金燕,杜敏杰.多分类SVDD混叠域识别新方法与故障诊断应用[J].航天控制,2012,30(06):83-88.
[8]祝志博,王培良,宋执环.基于PCA-SVDD的故障检测和自学习辨识[J].浙江大学学报(工学版),2010,44(04):652-658.
[9] LEE KY, KIM DW, LEE KH, et al. Density- induced support vector data description[J]. IEEE Trans Neural Netw, 2007, 18 (1): 284-289.
[10] CAO H , SI G , ZHU W , et al. Enhancing effectiveness of density-based outlier mining[C]. International Symposiums on Information Processing. IEEE Computer Society, 2008.
[11] YUAN Y , CAO H , ZHANG Y , et al. Outlier mining based on neighbor-density-deviation with minimum hyper-sphere[J]. Information Technology & Control, 2016, 45(3):267-277.
相似文献/References: