|本期目录/Table of Contents|

[1]刘 辉.基于RBF人工神经网络的变电站无功补偿装置自动化控制方法[J].工业仪表与自动化装置,2021,(06):34-38.[doi:10.19950/j.cnki.cn61-1121/th.2021.06.007]
 LIU Hui.Automatic control method of reactive power compensation device in Substation based on RBF artificial neural network[J].Industrial Instrumentation & Automation,2021,(06):34-38.[doi:10.19950/j.cnki.cn61-1121/th.2021.06.007]
点击复制

基于RBF人工神经网络的变电站无功补偿装置自动化控制方法

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2021年06期
页码:
34-38
栏目:
出版日期:
2021-12-15

文章信息/Info

Title:
Automatic control method of reactive power compensation device in Substation based on RBF artificial neural network
作者:
刘 辉
(国网遂宁供电公司,四川 遂宁 629000)
Author(s):
LIU Hui
(state grid suining electric power company,Suining, 629000 China)
关键词:
RBF人工神经网络变电站无功补偿装置自动化控制
Keywords:
RBF Artificial neural network substation reactive power compensation device automation control
分类号:
TM714.3
DOI:
10.19950/j.cnki.cn61-1121/th.2021.06.007
文献标志码:
A
摘要:
变电站无功补偿点电压受到无功补偿容量的影响,导致低压控制补偿投入电压比过高,对此,研究基于RBF人工神经网络的变电站无功补偿装置自动化控制方法。设置变电站无功补偿容量,并根据容量的大小调整变电站在近电源范围的超调量,以此为基础设定无功补偿装置自动化控制间隔,建立RBF人工神经网络补偿装置自动化控制动作逻辑,完成基于RBF人工神经网络的变电站无功补偿装置自动化控制方法设计。实验结果表明,该方法在控制周期在10-50s的区间内,普遍维持在2.0 kV,在50 s后呈现出小幅度的上升趋势,控制效果较为稳定,可应用于实际。
Abstract:
The voltage of reactive power compensation point in substation is affected by reactive power compensation capacity, which leads to high input voltage ratio of low voltage control compensation. Therefore, the automatic control method of reactive power compensation device in Substation Based on RBF artificial neural network is studied. The reactive power compensation capacity of the substation is set, and the overshoot of the substation near the power supply range is adjusted according to the capacity. On this basis, the automatic control interval of the reactive power compensation device is set, the automatic control action logic of the RBF artificial neural network compensation device is established, and the design of the automatic control method of the substation reactive power compensation device based on the RBF artificial neural network is completed. The experimental results show that the control cycle of this method is generally maintained at 2.0 kV in the range of 10-50s, and it shows a small rising trend after 50s, and the control effect is relatively stable, which can be applied to practice.

参考文献/References:

[1]李宪宝,吴乃庆,付世超,等.10 kV及以下配网电容无功补偿及其节能[J].化学工程与装备,2021(05):193-194.

[2]赵吉祥,李丹,廖攀峰,等.基于无功超调率指标的变电站无功优化配置[J].电力电容器与无功补偿,2020,41(01):45-51.
[3]毛海龙.SVC自动无功补偿系统装置的设计[J].机械管理开发,2020,35(1):54-55+93.
[4]巫晓云,邹志平.某地区电网220 kV变电站无功补偿装置优化方案[J].江西电力,2019,43(10):23-27.
[5]李光田.变电站无功补偿装置的改造[J].电世界,2020,61(12):25-27.
[6]左龙,吴晓蓉,林波,等.动态无功补偿装置在特殊供电负荷中的应用研究[J].四川电力技术,2020,43(04):24-27+74.
[7]刘恋.新建盛家屯110 kV变电站无功补偿容量的配置[J].农村电气化,2020(07):79-80.
[8]于彪,王德强.磁控电抗器型静止无功补偿装置的应用[J].上海电气技术,2020,13(02):16-19+56.
[9]孙振作.110 kV模块化变电站无功补偿配置[J].农村电气化,2020(04):16-18.
[10]邹佳鸥.高压电网无功补偿优化分析[J].电气技术与经济,2021(02):61-63.
[11]张磊,余朋军,卢天林,等.特高压变压器中压侧无功补偿运行电压特性分析[J].高压电器,2021,57(01):100-107+115.
[12]李连尉,程宣玮,李汉孟.浅谈无功补偿设计与装置[J].科技风,2020(35):5-6.
[13]王玎,石辉,沈阳武,等.基于暂态电压恢复特性的SVG无功补偿装置优化配置方法[J].湖南电力,2019,39(05):31-35.
[14]高歌,刘毅力,马龙涛,等.ETAP在110 kV终端变电站无功补偿配置上的应用[J].国外电子测量技术,2019,38(10):22-25.
[15]张頔,冯迎春,苏红红,等.750 kV变电站无功补偿配置优化浅析[J].电力勘测设计,2019(08):30-33+65.
[16]刘鑫,杨延勇,单金博.变电站无功补偿设计优化方法研究[J].电力勘测设计,2019(08):49-51+69.
[17]官澜,刘菲,文卫兵,等.特高压交流变电站无功补偿装置直接接入500 kV母线方案研究[J].中国电力,2019,52(08):98-104.
[18]刘俊.无功补偿技术在电气自动化中的应用[J].设备管理与维修,2019(15):139-141.
[19]张坤,张可人,罗潇,等.变电站混合无功补偿系统的优化控制策略[J].电力系统及其自动化学报,2019,31(06):137-142.
[20]冯宾.探究10 kV电网无功补偿装置设计[J].矿业装备,2019(03):40-41.

相似文献/References:

[1]周蓓蓓.SVM软测量在明胶浓度检测中的应用[J].工业仪表与自动化装置,2013,(05):96.
[2]赵洪瑞,王洪远,朱素杰,等.基于RBF神经网络的镜头畸变校正方法[J].工业仪表与自动化装置,2015,(02):81.
 ZHAO Hongrui,WANG Hongyuan,ZHU Sujie,et al.The study of lens distortion correction based on radiate basis function neural networks[J].Industrial Instrumentation & Automation,2015,(06):81.
[3]赵文仓,潘锦宇.基于神经网络的污水处理设备监测CPS设计[J].工业仪表与自动化装置,2017,(03):108.
 Zhao Wen-cang,Pan Jin-yu.Testing and monitoring CPS design of sewage treatment equipment based on artificial neural network[J].Industrial Instrumentation & Automation,2017,(06):108.

备注/Memo

备注/Memo:
收稿日期:2021-06-29
作者简介:刘辉(1969),男,汉族,四川安县,本科,高级工程师,研究方向为电力系统及其自动化、电网规划和工程施工管理等。
更新日期/Last Update: 1900-01-01