|本期目录/Table of Contents|

[1]张 鑫,王 衡,卫永鹏,等.基于SSA-PNN的电力变压器故障诊断[J].工业仪表与自动化装置,2022,(01):86-90.[doi:10.19950/j.cnki.cn61-1121/th.2022.01.018]
 ZHANG Xin,WANG Heng,WEI Yongpeng,et al.Fault diagnosis of power transformer based on SSA-PNN[J].Industrial Instrumentation & Automation,2022,(01):86-90.[doi:10.19950/j.cnki.cn61-1121/th.2022.01.018]
点击复制

基于SSA-PNN的电力变压器故障诊断

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2022年01期
页码:
86-90
栏目:
出版日期:
2022-02-15

文章信息/Info

Title:
Fault diagnosis of power transformer based on SSA-PNN
文章编号:
1000-0682(2022)01-0000-00
作者:
张 鑫1王 衡2卫永鹏1王胜利1苏益辉2
1.国网甘肃省电力公司检修公司;
2.兰州理工大学 电气工程与信息工程学院,甘肃 兰州 730050
Author(s):
ZHANG Xin1WANG Heng2WEI Yongpeng1WANG Shengli1SU Yihui2
1. State Grid Gansu Electric Power Company maintenance company ,Gansu Lanzhou 730050 ,China;?div>2. College of Electrical and Information Engineering, Lanzhou University of Technology, Gansu Lanzhou 730050,China
关键词:
变压器故障诊断麻雀搜索算法概率神经网络
Keywords:
transformer fault diagnosis sparrow search algorithm probabilistic neural network
分类号:
TM407
DOI:
10.19950/j.cnki.cn61-1121/th.2022.01.018
文献标志码:
A
摘要:
为了提高变压器故障诊断的准确率,在改良三比值法的基础上,采用麻雀搜索算法优化概率神经网络构建一种新型变压器故障诊断网络模型,并设计相应的故障诊断方法。分析表明,与基于概率神经网络的变压器故障诊断方法相比,基于该网络模型的诊断方法提高了变压器故障识别与故障分类的准确率,在电力变压器的故障诊断中具有一定的实际工程意义。
Abstract:
In order to improve the accuracy of transformer fault diagnosis, based on the improved three ratio method, the sparrow search algorithm is used to optimize the probabilistic neural network, a new transformer fault diagnosis network model is established, and the corresponding fault diagnosis method is designed. The analysis shows that compared with the transformer fault diagnosis method based on probabilistic neural network, the diagnosis method based on the network model improves the accuracy of transformer fault identification and fault classification, and has certain engineering practical significance in the fault diagnosis of power transformer.

参考文献/References:

[1] 张铭泽,李新聪,梁今今,等.贝叶斯网络理论在变压器可靠性判断中的应用[J].变压器,2019,56(07):37-40.

[2] SMITH W A, RANDALL R B. Rolling element bearing diagnosticsusing thecase western serveuniversity data: a benchmark stud[J].Mechanical Systems and Signal Processing.2015,64-65:100-131.
[3] 杨晓伟,郝志峰.支持向量机的算法设计与分析[M].北京:科学出社,2013.
[4] 杨莉,尚勇,周跃峰,等.基于概率推理和模糊数学的变压器综合故障诊断模型[J].中国电机工程学报,2000(07):20-24.
[5] 石鑫,朱永利,宁晓光,等.基于深度自编码网络的电力变压器故障诊断[J].电力自动化设备,2016,36(05):122-126.
[6] 谭子兵,黄秀超,钟建伟.基于BP人工神经网络的电力变压器故障诊断研究[J].湖北民族学院学报(自然科学版),2018,36(01):89-92.
[7] XUE JK, SHEN B.A novel swarmintelligence optimizationapproach:sparrow search a lgorith[J].Systems Science&Con-trol Engineering,2020,8(1):22-34.
[8] 张淑清,苑世钰,姚玉永,等.基于ICEEMD及AWOA优化ELM的机械故障诊断方法[J].仪器仪表报,2019,40(11):172-180.
[9] 贾立敬,张建文,王传林,等.基于DGA的差分进化支持向量机电力变压器故障诊断[J].高压电器,2015,51(04):13-18.
[10] 董明,孟源源,徐长响,等.基于支持向量机及油中溶解气体分析的大型电力变压器故障诊断模型研究[J].中国电机工程学报,2003(07):88-92.
[11] 罗建波.基于DGA的电力变压器故障诊断技术研究[D].杭州:浙江大学,2005.
[12] 汪可,李金忠,张书琦,等.变压器故障诊断用油中溶解气体新特征参量[J].中国电机工程学报,2016,36(23):6570-6578+6625.
[13] 张林,刘继春.基于EEMD-SE和PSO-KELM的短期负荷区间预测方法[J].中国电力,2021,54(03):132-140.
[14] XIANG L,WEI Z,QIAN D.Crossdomain fault diagnosis of rolling el-ement bearings using deep generative neural networks[J].IEEETransactions on Industrial Electronics,2018,66(7) :5525-5534.
[15] 张朝龙,何怡刚,杜博伦,等.基于深度学习的电力变压器智能故障诊断方法[J].电子测量与仪器学报,2020,34(01):81-89.
[16] 安源,张智恒.基于PNN的电力变压器故障诊断[J].电气应用,2020,39(11):12-17.
[17]王小川,史风,郁磊,等.MATLAB神经网络43个案例分析[M].北京:北京航空航天大学出版社,2013:201-206.

相似文献/References:

[1]朱姝伟,张稳娥.变压器的常见故障及保护[J].工业仪表与自动化装置,2013,(05):87.
[2]尹新权,王 珺,张亚萍.基于模糊理论的柴油机故障诊断专家系统[J].工业仪表与自动化装置,2015,(01):111.
 YIN Xinquan,WANG Jun,ZHANG Yaping.Fault diagnostic expert system of diesel engine based on fuzzy theory[J].Industrial Instrumentation & Automation,2015,(01):111.
[3]孟文俊a,徐光华a,b,等.基于LabVIEW的滚动轴承非平稳过程监测诊断及性能评估系统的开发[J].工业仪表与自动化装置,2015,(02):18.
 MENG Wenjuna,XU Guanghuaa,b,et al.Development of non-stationary process for rolling bearing fault diagnosis and performance evaluation system based on LabVIEW[J].Industrial Instrumentation & Automation,2015,(01):18.
[4]李 茜,王延年.基于普通铣床数控化的S7-300 PLC远程监控和故障诊断系统设计[J].工业仪表与自动化装置,2015,(02):49.
 LI Qian,WANG Yannian.Design of remote monitoring and fault diagnosis systembased on the ordinary milling machine of numerical control of S7-300 PLC[J].Industrial Instrumentation & Automation,2015,(01):49.
[5]巴寅亮,王书提,谢 鑫.基于改进的BP神经网络的柴油发动机故障诊断[J].工业仪表与自动化装置,2015,(03):94.
 BA Yinliang,WANG Shuti,XIE Xin.Research of diesel engine fault based on improved BP neural network[J].Industrial Instrumentation & Automation,2015,(01):94.
[6]王江荣,文 晖,黄建华.基于差分进化算法的二次回归在矿井通风机故障诊断中的应用[J].工业仪表与自动化装置,2015,(01):50.
 WANG Jiangrong,WEN Hui,HUANG Jianhua.The two regression in ventilator fault diagnosis application based on difference evolutionary algorithm[J].Industrial Instrumentation & Automation,2015,(01):50.
[7]赵建利,张鹏,侯英洒,等.绝缘结构对油浸式变压器绝缘纸含水量测试结果的影响研究[J].工业仪表与自动化装置,2016,(03):122.
 Zhao Jianli,Zhang Peng,Hou Yingsa,et al.Study on the effect of insulation structure to insulation paper water test results of oil immersed transformer[J].Industrial Instrumentation & Automation,2016,(01):122.
[8]张卫峰,惠俊军.智能故障诊断技术的现状及展望[J].工业仪表与自动化装置,2017,(05):21.
 ZHANG Weifeng,HUI Junjun.The present situation and prospects of intelligence fault diagnosis technology[J].Industrial Instrumentation & Automation,2017,(01):21.
[9]宫玮丽,梁 波,王晓兰.基于小波包和Hilbert包络分析的隧道掘进机主轴承故障诊断方法研究[J].工业仪表与自动化装置,2018,(02):15.[doi:1000-0682(2018)02-0000-00]
 GONG Weili,LIANG Bo,WANG Xiaolan.Research on fault diagnosis method of main bearing of tunnel boring machine based on wavelet packet and Hilbert envelope analysis[J].Industrial Instrumentation & Automation,2018,(01):15.[doi:1000-0682(2018)02-0000-00]
[10]殷培峰,张婧瑜.基于交直流互联电网中变压器直流偏磁抑制技术的应用[J].工业仪表与自动化装置,2018,(04):123.[doi:1000-0682(2018)04-0000-00]
 YIN Peifeng,ZHANG Jingyu.The application of the DC bias restraining technology for the transformer under AC/DC interconnected power grid[J].Industrial Instrumentation & Automation,2018,(01):123.[doi:1000-0682(2018)04-0000-00]

备注/Memo

备注/Memo:
收稿日期:2021-09-04

作者简介:
张鑫(1980),硕士研究生,高级工程师,主要从事变电设备运维检修、技术监督、设备异常事故的分析及处理工作。。
更新日期/Last Update: 1900-01-01