|本期目录/Table of Contents|

[1]李荣芳.基于神经网络的 WiFi 位置指纹室内定位算法研究[J].工业仪表与自动化装置,2022,(03):109-113.[doi:10.19950/j.cnki.cn61-1121/th.2022.03.023]
 LI Rongfang.Research on WiFi location fingerprint indoor localization algorithm based on neural network[J].Industrial Instrumentation & Automation,2022,(03):109-113.[doi:10.19950/j.cnki.cn61-1121/th.2022.03.023]
点击复制

基于神经网络的 WiFi 位置指纹室内定位算法研究

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2022年03期
页码:
109-113
栏目:
出版日期:
2022-06-15

文章信息/Info

Title:
Research on WiFi location fingerprint indoor localization algorithm based on neural network
文章编号:
1000-0682(2022)03-0000-00
作者:
李荣芳
陕西邮电职业技术学院,陕西 咸阳 712000
Author(s):
LI Rongfang
Shaanxi Post and Telecommunication College, Shaanxi Xianyang 712000
关键词:
室内定位WiFi 定位机器学习神经网络位置指纹
Keywords:
indoor positioning WiFi positioning machine learning neural network location fingerprint
分类号:
TN92
DOI:
10.19950/j.cnki.cn61-1121/th.2022.03.023
文献标志码:
A
摘要:
WiFi 技术定位技术是当前室内定位技术研究的热点方向,针对 WiFi 位置指纹室内定位技术需求,该文提出了一种神经网络模型算法,利用 Python 平台构建神经网络算法模型,并根据模型求解结果进行分析,最终实现对目标对象的定位仿真,并选取了 WiFi 位置指纹最常用的 KNN(K-Nearest Neighbor)算法、随机森林算法,将神经网络模型定位结果与 KNN 算法、随机森林算法进行比较分析,仿真结果验证了神经网络定位算法的优越性。
Abstract:
WiFi technology positioning technology is the current hot research direction of indoor positioning technology. Aiming at the needs of WiFi location fingerprint indoor positioning technology, this paper proposes a neural network model algorithm, using the Python platform to build a neural network algorithm model, and proceed according to the model solution results Analyze, and finally realize the positioning simulation of the target object, and select the most commonly used KNN (K-Nearest Neighbor) algorithm and random forest algorithm for WiFi location fingerprints, and compare and analyze the positioning results of the neural network model with the KNN algorithm and the random forest algorithm. The simulation results verify the superiority of the neural network positioning algorithm.

参考文献/References:

[1]仲臣,韩雨辰,宁全可,等.基于 AP 加权的 WKNN 室内定位算法[J].现代信息科技,2020,4(22):71-73.

[2]GAO J , LI X , DING Y , et al. WiFi-Based Indoor Positioning by Random Forest and Adjusted Cosine Similarity[C]// 2020 Chinese Control And Decision Conference (CCDC). 2020.
[3]朱正伟,蒋威,张贵玲,等.基于 RSSI 的室内 WiFi 定位算法[J].计算机工程与设计,2020,41(10):2958-2962.
[4]ZHANG W , YU K , WANG W , et al. A Self-Adaptive AP Selection Algorithm Based on Multi-Objective Optimization for Indoor WiFi Positioning[J]. IEEE Internet of Things Journal, 2020(99):1-1.
[5] YANG C , SHAO H R . WiFi-based indoor positioning[J]. IEEE Communications Magazine, 2015, 53(3):150-157.
[6] PARK C R , RHEE S H . Indoor positioning using Wi-Fi fingerprint with signal clustering[C]// International Conference on Information & Communication Technology Convergence. 2017:820-822.
[7]谢宏,杨环.一种随机森林与深度学习结合的室内定位方法[J].上海海事大学学报,2020,41(03):117-121.
[8]曹建荣,张旭,武欣莹,等.结合 CNN 和 WiFi 指纹库的室内定位算法[J].计算机系统应用,2020,29(07):173-179.
[9]朱轶峰.基于 WiFi-BP 的室内定位算法[J].电子科技,2020,33(08):74-79.
[10] MARQUES N. MENESES F, MOREIRA A.Combining similarity functions and majority rules for multi-building, multi-floor, wifi positioning, [C]//In Proceedings of the 3th the International Conference on Indoor Positioning and Indoor Navigation (IPIN’2012), 2012.
[11]李菲.基于图像信号与无线通信信号融合的室内定位关键技术研究[D].北京:北京邮电大学,2018.?/div>
[12]朱清山,王伟.基于 RSSI 的指纹地图室内定位算法[J].国外电子测量技术,2020,39(10):6-9.
[13]吴虹,王国萍,彭鸿钊,等.一种基于 KNN 的室内位置指纹定位算法[J].南开大学学报(自然科学版),2020,53(06):5-9.
[14]王恩良,王玫,孟志斌,等.一种基于 WiFi 指纹特征匹配的加权 K 近邻室内定位算法[J].桂林电子科技大学学报,2017,37(4):276-281.
[15]李嘉俊.基于深度学习的WiFi 室内定位算法研究[D].广州:广东工业大学,2018.

相似文献/References:

[1]李 珣,刘 瑶,刘 洋,等.室内单目视觉全局定位系统的设计与实现[J].工业仪表与自动化装置,2017,(01):13.
 LI Xun,LIU Yao,LIU Yang,et al.Design and Implementation of Indoor Positioning System Based on Monocular Vision[J].Industrial Instrumentation & Automation,2017,(03):13.
[2]韩佳乐,马建晓.基于GPS信号的塔型室内定位系统设计[J].工业仪表与自动化装置,2020,(06):29.[doi:1000-0682(2020)06-0000-00]
 HAN Jiale,MA Jianxiao*.Design of tower indoor location system based on GPS signal[J].Industrial Instrumentation & Automation,2020,(03):29.[doi:1000-0682(2020)06-0000-00]

备注/Memo

备注/Memo:
收稿日期:2021-10-18

作者简介:
李荣芳(1979),女,硕士,副教授,主要研究方向为移动互联网应用,数据通信。
更新日期/Last Update: 1900-01-01