|本期目录/Table of Contents|

[1]于宏飞,张楚琦,等.仪器仪表材料在恶劣环境下的腐蚀现状[J].工业仪表与自动化装置,2022,(05):91-96.[doi:10.19950/j.cnki.cn61-1121/th.2022.05.017]
 YU Hongfei,ZHANG Chuqi,WANG Rongxiang,et al.Corrosion status of instrument materials in severe environment[J].Industrial Instrumentation & Automation,2022,(05):91-96.[doi:10.19950/j.cnki.cn61-1121/th.2022.05.017]
点击复制

仪器仪表材料在恶劣环境下的腐蚀现状

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2022年05期
页码:
91-96
栏目:
出版日期:
2022-10-15

文章信息/Info

Title:
Corrosion status of instrument materials in severe environment
文章编号:
1000-0682(2022)05-0000-00
作者:
于宏飞1张楚琦1 2王荣祥1邓俊豪1纪春阳1梁佩博1 2*
1.工业和信息化部电子第五研究所,广东 广州 511370;
2.广东省电子信息产品可靠性技术重点实验室,广东 广州 511370
Author(s):
YU Hongfei1 ZHANG Chuqi1 2 WANG Rongxiang1 DENG Junhao1 JI Chunyang1 LIANG Peibo1 2*
1. CEPREI, Guangdong Guangzhou 511370, China;
2.Guangdong Provincial Key Laboratory of Electronic Information Products Reliability Technology, Guangzhou 511370, China
关键词:
仪器仪表材料腐蚀恶劣环境耐蚀性能抗氧化性能
Keywords:
instrument materials corrosion severe environment corrosion resistance oxidation resistance
分类号:
TG178
DOI:
10.19950/j.cnki.cn61-1121/th.2022.05.017
文献标志码:
A
摘要:
仪器仪表材料的腐蚀是影响仪器仪表稳定性和安全性的主要因素之一。仪器仪表材料在恶劣环境下均会发生不同程度的腐蚀,腐蚀介质浓度越高,对仪器仪表材料的侵蚀越严重。镍基高温合金的耐蚀性能、抗氧化性能明显优于不锈钢和钛合金。调整仪器仪表材料中的合金元素含量,可以提高仪器仪表材料的耐蚀性能和抗氧化性能。仪器仪表在恶劣环境服役前,其表面应采用刷涂有机涂料、等离子喷涂、激光熔覆、微弧氧化等技术进行防护。
Abstract:
The corrosion of instrument materials is one of the main factors affecting the stability and safety of instrument. Instrument materials will be corroded to varying degrees in severe environment, the higher the concentration of corrosive medium, the more serious the corrosion of instrument materials. The corrosion resistance and oxidation resistance of nickel-base superalloy are obviously batter than that of stainless steel and titanium alloy. The corrosion resistance and oxidation resistance of instrument materials can be improved by adjusting the content of alloy elements in instrument materials. Before instruments are put into service in severe environment, the surface of instrument should be protected by painting organic coating, plasma spraying, micro-arc oxidation and other technologies.

参考文献/References:

[1]樊文通. 仪器仪表材料的现状与展望[J]. 功能材料, 1986(5):5-12.

[2]侯劲. 化工仪表的防腐蚀问题分析[J]. 自动化与仪器仪表, 2002(6):49-52.
[3]李梅英, 李友文. 腐蚀介质仪表的防腐措施[J]. 氯碱工业, 2007(B06):87-88.
[4]许洁. 有色金属加工行业仪器仪表应用与管理[J]. 世界有色金属, 2020(18):136-137.
[5]袁涛. 我国仪器仪表行业发展综述[J]. 电子测试, 2016(6):122-123.
[6]佚名. 仪器仪表材料发展的要求、特点及趋势[J]. 新材料产业, 2001(05):26-28.
[7]王华. 仪表常用不锈钢牌号及性能[J]. 石油化工自动化, 2016, 52(6):6.
[8]黄张洪, 谢英杰, 吕利强, 等. 耐热钛合金概述[J]. 热加工工艺, 2010(12):4-8.
[9]王清江, 刘建荣, 杨锐. 高温钛合金的现状与前景[J]. 航空材料学报, 2014, 34(4):1-26.
[10]梁爽, 刘智鑫, 李秋鹤. 镍基高温合金的发展综述[J]. 山东工业技术, 2016(4):34.
[11]王会阳, 安云岐, 李承宇, 等. 镍基高温合金材料的研究进展[J]. 材料导报:纳米与新材料专辑, 2011(25):482-486.
[12]HSU C H, CHEN T C, HUANG RT, et al. Stress Corrosion Cracking Susceptibility of 304L Substrate and 308L Weld Metal Exposed to a Salt Spray[J]. Materials, 2017, 10(2):187.
[13]TANI J I, MAYUZUMI M, HARA N. Stress corrosion cracking of stainless-steel canister for concrete cask storage of spent fuel[J]. Journal of Nuclear Materials, 2008, 379(1-3):42-47.
[14]CHIANG M F, HSU H H, YOUNG M C, et al. Mechanical degradation of cold-worked 304 stainless steel in salt spray environments[J]. Journal of Nuclear Materials, 2012, 422(1-3):58-68.
[15]MAYUZUMI M, ARAI T, HIDE K. Chloride Induced Stress Corrosion Cracking of Type 304 and 304L Stainless Steels in Air[J]. Zairyo-to-Kankyo, 2011, 52(3):166-170.
[16]LI W J, YOUNG M C, LAI C L, et al. The effects of rolling and sensitization treatments on the stress corrosion cracking of 304L stainless steel in salt-spray environment[J]. Corrosion Science, 2013, 68:25-33.
[17]CHIANG M F, HSY H H, YOUNG M C, et al. Mechanical degradation of cold-worked 304 stainless steel in salt spray environments[J]. Journal of Nuclear Materials, 2012, 422(1-3):58-68.
[18]王晴晴,上官晓峰. 30CrMnSiNi2A钢与TC18钛合金表面处理前后的接触腐蚀性能[J]. 材料保护, 2012, 45(11):27-30.
[19]石瑶, 黄子琳, 袁珂. 三种航空发动机常用金属材料盐雾腐蚀试验研究[J]. 航空标准化与质量, 2020(3):5.
[20]徐先平, 金嘉群. 镍基合金涂层在三杆阀上的耐腐蚀应用研究[J]. 深冷技术, 2015(4):53-56.
[21]GENG M R, HE G Y, SUN Z P, et al. Corrosion damage mechanism of TiN/ZrN nanoscale multilayer anti-erosion coating[J]. Coatings, 2018, 8(11):400.
[22]SUN Z P, HE G Y, MENG Q J, et al. Corrosion mechanism investigation of TiN/Ti coating and TC4 alloy for aircraft compressor application[J]. Chinese Journal of Aeronautics, 2020, 33(06):256-267.
[23]SHAO S A, XI H Z, CHANG Y P. Study on the Salt Spray Corrosion and Erosion Behavior of TC4 Titanium Alloy[J]. Advanced Materials Research, 2011, 233-235:2409-2412.
[24]GURRAPPA I. Characterization of titanium alloy Ti-6Al-4 V for chemical, marine and industrial applications[J]. Materials Characterization, 2003, 51(2-3):131-139.
[25]KHANNA A S. High Temperature Oxidation/Corrosion[M]. 2016:1-31.
[26]TRINDADE V B, KRUPP U, WAGENHUBER E G, et al. Oxidation mechanisms of Cr-containing steels and Ni-base alloys at high-temperatures –. Part I: The different role of alloy grain boundaries[J]. Materials and Corrosion, 2005, 56(11):785-790.
[27]KAMAL S, JAYAGANTHAN R, PRAKASH S . High temperature cyclic oxidation and hot corrosion behaviours of superalloys at 900 °C[J]. Bulletin of Materials Science, 2010, 33(3):299-306.
[28] DU H L, DATTA P K, LEWIS D B, et al. High-temperature corrosion of Ti and Ti-6Al-4V alloy[J]. Oxidation of Metals, 1996, 45(5-6):507-527.
[29]DAI J, SUN C, WANG A, et al. High temperature oxidation and hot corrosion behaviors of Ti2AlNb alloy at 923 K and 1023 K[J]. Corrosion Science, 2021, 184:109336.
[30]YANG Z, XIA G G, WALKER M S, et al. High temperature oxidation/corrosion behavior of metals and alloys under a hydrogen gradient[J]. International Journal of Hydrogen Energy, 2007, 32(16):3770-3777.
[31]PARK S J, SEO S M, YOO Y S, et al. Effects of Al and Ta on the high temperature oxidation of Ni-based superalloys[J]. Corrosion Science, 2015, 90:305-312.[32]ZHANG K, NIU Y, WU T. High temperature corrosion of NiCr alloys in chlorination-oxidation atmosphere[J]. Journal of Materials Engineering, 2005, 1:12-15.
[33]WANG W, GUAN B, LI X, et al. Corrosion behavior and mechanism of austenitic stainless steels in a new quaternary molten salt for concentrating solar power[J]. Solar Energy Materials and Solar Cells, 2019, 194:36-46.
[34]SHANKAR A R, MUDALI U K. Corrosion of type 316L stainless steel in molten LiCl–KCl salt[J]. Materials and Corrosion, 2008, 59(11):878-882.
[35]BALA N, SINGH H, PRAKASH S. High temperature corrosion behavior of cold spray Ni-20Cr coating on boiler steel in molten salt environment at 900°C[J]. Journal of Thermal Spray Technology, 2010, 19(1):110-118.
[36]ANUWAI M, JAYAGANTHAN R, TEWARI V K, et al. A study on the hot corrosion behavior of Ti–6Al–4V alloy[J]. Materials Letters, 2007, 61(7):1483-1488.
[37]XI Y J, LU J B, WANG Z X, et al. Effect of nanocrystallization on hot corrosion resistance of Ti-48Al-8Cr-2Ag alloy in molten salts[J]. Transactions of Nonferrous Metals Society of China, 2006, 16(3):511-516.
[38]DONG R F, ZHANG T B, HU R, et al. Hot corrosion behavior and mechanical properties degradation of a Ni–Cr–W-based superalloy[J]. Rare Metals, 2017, 1:23-31.
[39]娄学明, 孙文儒, 郭守仁, 等. IN718高温合金热腐蚀行为及其对力学性能的影响[J]. 稀有金属材料与工程, 2008, 37(2):5.

相似文献/References:

[1]梁 安,陈 翠.水煤浆气化装置中黑水调节阀损坏原因分析与改进方案[J].工业仪表与自动化装置,2020,(04):96.[doi:1000-0682(2020)04-0000-00]
 LIANG An,CHEN Cui.Analysis of reasons and technical renovation for damage of black water control valve in the water-coal slurry gasification device[J].Industrial Instrumentation & Automation,2020,(05):96.[doi:1000-0682(2020)04-0000-00]

备注/Memo

备注/Memo:
收稿日期:2022-06-10

基金项目:
面向恶劣环境的仪器仪表可靠性设计及验证技术(2018YFB2003600);
基于压力变送器熔盐腐蚀的加速寿命试验方法研究(202102020706)

作者简介:
于宏飞(1996),男,黑龙江省鹤岗市人,硕士研究生,助理工程师,主要从事可靠性及环境适应性评价技术研究

通信作者:
梁佩博(1987),男,黑龙江省哈尔滨市人,博士研究生,高级工程师,主要从事仪器仪表可靠性工程研究
更新日期/Last Update: 1900-01-01