参考文献/References:
[1]樊文通. 仪器仪表材料的现状与展望[J]. 功能材料, 1986(5):5-12.[2]侯劲. 化工仪表的防腐蚀问题分析[J]. 自动化与仪器仪表, 2002(6):49-52.
[3]李梅英, 李友文. 腐蚀介质仪表的防腐措施[J]. 氯碱工业, 2007(B06):87-88.
[4]许洁. 有色金属加工行业仪器仪表应用与管理[J]. 世界有色金属, 2020(18):136-137.
[5]袁涛. 我国仪器仪表行业发展综述[J]. 电子测试, 2016(6):122-123.
[6]佚名. 仪器仪表材料发展的要求、特点及趋势[J]. 新材料产业, 2001(05):26-28.
[7]王华. 仪表常用不锈钢牌号及性能[J]. 石油化工自动化, 2016, 52(6):6.
[8]黄张洪, 谢英杰, 吕利强, 等. 耐热钛合金概述[J]. 热加工工艺, 2010(12):4-8.
[9]王清江, 刘建荣, 杨锐. 高温钛合金的现状与前景[J]. 航空材料学报, 2014, 34(4):1-26.
[10]梁爽, 刘智鑫, 李秋鹤. 镍基高温合金的发展综述[J]. 山东工业技术, 2016(4):34.
[11]王会阳, 安云岐, 李承宇, 等. 镍基高温合金材料的研究进展[J]. 材料导报:纳米与新材料专辑, 2011(25):482-486.
[12]HSU C H, CHEN T C, HUANG RT, et al. Stress Corrosion Cracking Susceptibility of 304L Substrate and 308L Weld Metal Exposed to a Salt Spray[J]. Materials, 2017, 10(2):187.
[13]TANI J I, MAYUZUMI M, HARA N. Stress corrosion cracking of stainless-steel canister for concrete cask storage of spent fuel[J]. Journal of Nuclear Materials, 2008, 379(1-3):42-47.
[14]CHIANG M F, HSU H H, YOUNG M C, et al. Mechanical degradation of cold-worked 304 stainless steel in salt spray environments[J]. Journal of Nuclear Materials, 2012, 422(1-3):58-68.
[15]MAYUZUMI M, ARAI T, HIDE K. Chloride Induced Stress Corrosion Cracking of Type 304 and 304L Stainless Steels in Air[J]. Zairyo-to-Kankyo, 2011, 52(3):166-170.
[16]LI W J, YOUNG M C, LAI C L, et al. The effects of rolling and sensitization treatments on the stress corrosion cracking of 304L stainless steel in salt-spray environment[J]. Corrosion Science, 2013, 68:25-33.
[17]CHIANG M F, HSY H H, YOUNG M C, et al. Mechanical degradation of cold-worked 304 stainless steel in salt spray environments[J]. Journal of Nuclear Materials, 2012, 422(1-3):58-68.
[18]王晴晴,上官晓峰. 30CrMnSiNi2A钢与TC18钛合金表面处理前后的接触腐蚀性能[J]. 材料保护, 2012, 45(11):27-30.
[19]石瑶, 黄子琳, 袁珂. 三种航空发动机常用金属材料盐雾腐蚀试验研究[J]. 航空标准化与质量, 2020(3):5.
[20]徐先平, 金嘉群. 镍基合金涂层在三杆阀上的耐腐蚀应用研究[J]. 深冷技术, 2015(4):53-56.
[21]GENG M R, HE G Y, SUN Z P, et al. Corrosion damage mechanism of TiN/ZrN nanoscale multilayer anti-erosion coating[J]. Coatings, 2018, 8(11):400.
[22]SUN Z P, HE G Y, MENG Q J, et al. Corrosion mechanism investigation of TiN/Ti coating and TC4 alloy for aircraft compressor application[J]. Chinese Journal of Aeronautics, 2020, 33(06):256-267.
[23]SHAO S A, XI H Z, CHANG Y P. Study on the Salt Spray Corrosion and Erosion Behavior of TC4 Titanium Alloy[J]. Advanced Materials Research, 2011, 233-235:2409-2412.
[24]GURRAPPA I. Characterization of titanium alloy Ti-6Al-4 V for chemical, marine and industrial applications[J]. Materials Characterization, 2003, 51(2-3):131-139.
[25]KHANNA A S. High Temperature Oxidation/Corrosion[M]. 2016:1-31.
[26]TRINDADE V B, KRUPP U, WAGENHUBER E G, et al. Oxidation mechanisms of Cr-containing steels and Ni-base alloys at high-temperatures –. Part I: The different role of alloy grain boundaries[J]. Materials and Corrosion, 2005, 56(11):785-790.
[27]KAMAL S, JAYAGANTHAN R, PRAKASH S . High temperature cyclic oxidation and hot corrosion behaviours of superalloys at 900 °C[J]. Bulletin of Materials Science, 2010, 33(3):299-306.
[28] DU H L, DATTA P K, LEWIS D B, et al. High-temperature corrosion of Ti and Ti-6Al-4V alloy[J]. Oxidation of Metals, 1996, 45(5-6):507-527.
[29]DAI J, SUN C, WANG A, et al. High temperature oxidation and hot corrosion behaviors of Ti2AlNb alloy at 923 K and 1023 K[J]. Corrosion Science, 2021, 184:109336.
[30]YANG Z, XIA G G, WALKER M S, et al. High temperature oxidation/corrosion behavior of metals and alloys under a hydrogen gradient[J]. International Journal of Hydrogen Energy, 2007, 32(16):3770-3777.
[31]PARK S J, SEO S M, YOO Y S, et al. Effects of Al and Ta on the high temperature oxidation of Ni-based superalloys[J]. Corrosion Science, 2015, 90:305-312.[32]ZHANG K, NIU Y, WU T. High temperature corrosion of NiCr alloys in chlorination-oxidation atmosphere[J]. Journal of Materials Engineering, 2005, 1:12-15.
[33]WANG W, GUAN B, LI X, et al. Corrosion behavior and mechanism of austenitic stainless steels in a new quaternary molten salt for concentrating solar power[J]. Solar Energy Materials and Solar Cells, 2019, 194:36-46.
[34]SHANKAR A R, MUDALI U K. Corrosion of type 316L stainless steel in molten LiCl–KCl salt[J]. Materials and Corrosion, 2008, 59(11):878-882.
[35]BALA N, SINGH H, PRAKASH S. High temperature corrosion behavior of cold spray Ni-20Cr coating on boiler steel in molten salt environment at 900°C[J]. Journal of Thermal Spray Technology, 2010, 19(1):110-118.
[36]ANUWAI M, JAYAGANTHAN R, TEWARI V K, et al. A study on the hot corrosion behavior of Ti–6Al–4V alloy[J]. Materials Letters, 2007, 61(7):1483-1488.
[37]XI Y J, LU J B, WANG Z X, et al. Effect of nanocrystallization on hot corrosion resistance of Ti-48Al-8Cr-2Ag alloy in molten salts[J]. Transactions of Nonferrous Metals Society of China, 2006, 16(3):511-516.
[38]DONG R F, ZHANG T B, HU R, et al. Hot corrosion behavior and mechanical properties degradation of a Ni–Cr–W-based superalloy[J]. Rare Metals, 2017, 1:23-31.
[39]娄学明, 孙文儒, 郭守仁, 等. IN718高温合金热腐蚀行为及其对力学性能的影响[J]. 稀有金属材料与工程, 2008, 37(2):5.
相似文献/References:
[1]梁 安,陈 翠.水煤浆气化装置中黑水调节阀损坏原因分析与改进方案[J].工业仪表与自动化装置,2020,(04):96.[doi:1000-0682(2020)04-0000-00]
LIANG An,CHEN Cui.Analysis of reasons and technical renovation for damage of black water control valve in the water-coal slurry gasification device[J].Industrial Instrumentation & Automation,2020,(05):96.[doi:1000-0682(2020)04-0000-00]