|本期目录/Table of Contents|

[1]雷 磊*,赵颖博,杨大渭,等.一种面向复杂电力系统的GMM-FBG光学电流传感器设计[J].工业仪表与自动化装置,2022,(06):45-51.[doi:10.19950/j.cnki.cn61-1121/th.2022.06.009]
 LEI Lei*,ZHAO Yingbo,YANG Dawei,et al.A GMM-FBG optical current sensor design for complex power systems[J].Industrial Instrumentation & Automation,2022,(06):45-51.[doi:10.19950/j.cnki.cn61-1121/th.2022.06.009]
点击复制

一种面向复杂电力系统的GMM-FBG光学电流传感器设计

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2022年06期
页码:
45-51
栏目:
出版日期:
2022-12-15

文章信息/Info

Title:
A GMM-FBG optical current sensor design for complex power systems
文章编号:
1000-0682(2022)06-0000-00
作者:
雷 磊1*赵颖博2杨大渭2高 宇1郭安祥1万 昊1
1.国网陕西省电力有限公司电力科学研究院;
2.国网陕西省电力有限公司,陕西 西安 710100
Author(s):
LEI Lei1* ZHAO Yingbo2 YANG Dawei2 GAO Yu1 GUO Anxiang1 WAN Hao1
1.State Grid Shaanxi Electric Power Co., Ltd. Electric Power Research Institute;
2. State Grid Shaanxi Electric Power Co., Ltd., Shaanxi,Xi’an 710100, China
关键词:
GMM-FBG光学电流传感器磁热耦合模型光纤布拉格光栅超磁致伸缩材料温度补偿
Keywords:
GMM-FBG optical current sensor magneto-thermal coupling model Fiber Bragg Grating (FBG) Giant Magnetostrictive Material (GMM) temperature compensation
分类号:
TN256
DOI:
10.19950/j.cnki.cn61-1121/th.2022.06.009
文献标志码:
A
摘要:
为提高测量电流的实时性和准确性,设计了适用于振动、应变、磁场和温度等多物理场的GMM-FBG光学电流传感器。分析了光纤布拉格光栅(FBG)的光学传感特性,构建了超磁致伸缩材料(GMM)的一维非线性模型和磁热耦合模型。组合封装GMM和FBG的传感探头,构建磁路系统和解调系统,校正了传感器的相位误差,设计并实现了GMM-FBG光学电流传感器实物。分析了温度特性,从不同磁场方向进行电流响应实验,验证了温度补偿方法。GMM-FBG光学电流传感器取消了温度换算,降低了计算量,实现了传感器的温度补偿,提高了实时测量精度。该研究面向数字化、智能化的复杂电力系统,为新型光学电流传感器的开发与优化提供了技术参考。
Abstract:
In order to improve the real-time performance and accuracy of current measurement, a GMM-FBG optical current sensor suitable for multi-physical fields such as vibration, strain, magnetic field and temperature was designed. The optical sensing properties of Fiber Bragg Grating (FBG) were analyzed, and the one-dimensional nonlinear model and magneto-thermal coupling model of Giant Magnetostrictive Material (GMM) were constructed. The sensor probes of GMM and FBG were combined and packaged, the magnetic circuit system and demodulation system were constructed, the phase error of the sensor was corrected, and the actual GMM-FBG optical current sensor was designed and realized. The temperature characteristics were analyzed, and current response experiments were carried out from different magnetic field directions to verify the temperature compensation method. The GMM-FBG optical current sensor canceled the temperature conversion, reduced the calculation amount, realized the temperature compensation of the sensor, and improved the real-time measurement accuracy. This research is oriented to digital and intelligent complex power systems, and provides a technical reference for the development and optimization of new optical current sensors.

参考文献/References:

[1]刘闯闯, 朱学华, 苏浩. 高灵敏度全光纤电流传感器研究进展[J]. 激光技术, 2022, 46(2): 175-181.

[2]许少毅, 薛宏宇, 邢方方,等. 偏振式电流传感器研究进展与展望[J]. 计量学报, 2021, 42(10): 1354-1366.
[3]于大洋, 张聪聪, 王磊,等. 变电站工频磁场干扰对泄漏电流传感器准确度影响研究[J]. 高压电器, 2021, 57(6): 107-114.
[4]YU Q, DAI L, XIONG R, et al. Current sensor fault diagnosis method based on an improved equivalent circuit battery model[J]. Applied Energy, 2022, 310: 118588.
[5]李奇, 李传生, 梁波,等. 光纤直流大电流传感器非线性机理及校准技术[J]. 计量学报, 2021, 42(4): 409-414.
[6]滕青芳, 崔宏伟, 朱建国,等. 基于无电流传感器的永磁同步电机系统模型预测控制[J]. 电机与控制学报, 2019, 23(5): 119-128.
[7]KARAPETYAN G G, DARYAN A V, MEGHAVORYAN D M, et al. Theoretical investigation of active fiber Bragg grating[J]. Optics Communications, 2002, 205(4-6): 421-425.
[8]CLARK A E, CROWDER D N. High temperature magnetostriction of TbFe2 and Tb0.27Dy0.73Fe2[J]. IEEE Transactions on Magnetics, 2003, 21(5): 1945-1947.
[9]王思劼, 刘俭辉, 李世忱. 国内外通信用可调谐激光器研究进展[J]. 光通信技术, 2003, 27(4): 38-43.
[10]项宇锴, 陈坤隆, 洪周良,等. 基于TMR传感器的非接触式高压直流电流测量方法[J]. 电力自动化设备, 2020, 40(4): 185-190.
[11]马跃辉, 刘兴, 王华,等. 基于磁致伸缩效应的FBG电流传感器[J]. 光通信技术, 2022, 46(3): 18-21.
[12]NASIR M, ADRIANTI. Design of Polarimetric-Based Optical Current Sensor for Electric Power System Application[J]. IOP Conference Series Materials Science and Engineering, 2021, 1041(1): 012016.
[13]SHI Z, FU W, SUN C, et al. Influence of structure parameters of optical current sensor with iron core on temperature distribution[J]. Journal of Computational Methods in Sciences and Engineering, 2021(4): 1-10.
[14]张昊. 一种环形结构单光路检测型光纤电流传感器[J]. 激光与光电子学进展, 2018, 55(6): 67-71.
[15]朱方梁,周俊,郑华雄,等.磁芯软磁特性对电流传感器直/交流性能影响的分析[J].电子设计工程,2020,(14):113-117.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2022-07-01
基金项目:
国家重点研发计划“智能电网技术与装备”重点专项(2020YFB0900510);
陕西省科技人才成长项目(2019AA05A308)
作者简介:
雷磊,男,陕西富平人,硕士,正高级工程师,研究方向为电网建设环水保技术。
更新日期/Last Update: 1900-01-01