|本期目录/Table of Contents|

[1]郑 薇.基于混沌BP算法的数字温度传感器温度误差模糊控制方法[J].工业仪表与自动化装置,2023,(03):122-126+133.[doi:10.19950/j.cnki.cn61-1121/th.2023.03.024]
 ZHENG Wei.Fuzzy control method for temperature error of digital temperature sensor based on chaotic BP algorithm[J].Industrial Instrumentation & Automation,2023,(03):122-126+133.[doi:10.19950/j.cnki.cn61-1121/th.2023.03.024]
点击复制

基于混沌BP算法的数字温度传感器温度误差模糊控制方法

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2023年03期
页码:
122-126+133
栏目:
出版日期:
2023-06-15

文章信息/Info

Title:
Fuzzy control method for temperature error of digital temperature sensor based on chaotic BP algorithm
文章编号:
1000-0682(2023)02-0122-05
作者:
郑 薇
西安明德理工学院 通识教育学院,陕西 西安 710124
Author(s):
ZHENG Wei
School of General Education, XI’AN MINGDE INSTITUTE OF TECHNOLOGY, Shaanxi Xi’an 710124, China
关键词:
Logistic映射法混沌扩频序列法互协方差函数
Keywords:
Logistic mapping method chaotic spread spectrum sequence method cross covariance function
分类号:
TP212
DOI:
10.19950/j.cnki.cn61-1121/th.2023.03.024
文献标志码:
A
摘要:
为了保证数字温度传感器对温度的准确读取,需要对传感器温度误差展开有效控制。为了提高数字温度传感器温度误差控制效果,提出基于混沌误差反向传播(Error Back Propagation Training,BP)神经网络算法的数字温度传感器温度误差模糊控制方法。首先利用经验模态分解法对收集到的温度测量数据展开去噪处理,计算不同温度区间内的温度测量超差概率,进而实现误差特征阈值的提取;建立三层神经网络,通过对温度误差的反复训练达到温度补偿目的。引入Logistic映射法与混沌扩频序列法,计算混沌系数间的互协方差函数,采用M-N-L结构的前馈网络对原BP网络的三层建构展开优化,并以此提高温度误差模糊控制的精度。测试结果表明:方法对传感器温度误差的提取值与实际超差值的差距低于0.03,收敛步数小于120步,误差补偿后误差比率低于19.3%,残差平方和低于0.23,对传感器温度误差的控制更加精准,温度补偿的效率更高,提高了误差控制效果。
Abstract:
In order to ensure the accurate reading of temperature by digital temperature sensor, it is necessary to effectively control the sensor temperature error. In order to improve the control effect of temperature error of digital temperature sensor, a fuzzy control method of temperature error of digital temperature sensor based on chaos error back propagation training (BP) neural network algorithm is proposed. Firstly, the empirical mode decomposition method is used to de-noise the collected temperature measurement data, calculate the out-of-tolerance probability of temperature measurement in different temperature ranges, and then extract the error characteristic threshold. Three-layer neural network is established to achieve temperature compensation through repeated training of temperature error. Logistic mapping method and chaotic spread spectrum sequence method are introduced to calculate the cross-covariance function between the chaotic coefficients, and the feedforward network of M-N-L structure is used to optimize the three-layer construction of the original BP network, so as to improve the accuracy of temperature error fuzzy control. The test results show that the difference between the extracted value of the sensor temperature error and the actual excess value is less than 0.03, the number of convergence steps is less than 120, the error ratio after error compensation is less than 19.3%, and the sum of squares of the residual error is less than 0.23, which makes the control of the sensor temperature error more accurate, the efficiency of temperature compensation higher, and improves the error control effect.

参考文献/References:

[1]刘旭,刘海宁,林心园,等.基于数字信号处理器的振动信号采集及边缘计算系统设计[J].济南大学学报(自然科学版),2021,35(04):307-314.

[2]王慧,符鹏,宋宇宁.基于萤火虫优化BP神经网络方法的传感器温度补偿策略[J].机械强度,2020,42(01):109-114.
[3]王青山,王伟杰,郭旭,等.分布式拉曼光纤温度传感器的误差修正方法[J].激光与光电子学进展,2020,57(17):84-92.
[4]程蕾,范彦平,张晓燊.基于PSO-ESPRIT算法的SAW温度传感器解调方法[J].包装工程,2022,43(05):219-226.
[5]宋雷,游东东,郑振兴,等.基于经验模态分解的RV减速器运动参数降噪研究[J].振动与冲击,2022,41(18):266-272+290.
[6]杨杰,赵磊,郭文彬.基于图谱域移位的带限图信号重构算法[J].自动化学报,2021,47(09):2132-2142.
[7]孙彪,郭霞生,屠娟,等.用于活体温度评估的非线性超声热应变模型[J].应用声学,2021,40(01):44-50.
[8]王忠,万冬冬,单闯,等.基于反向传播神经网络的拉曼光谱去噪方法[J].光谱学与光谱分析,2022,42(05):1553-1560.
[9]滕志军,张华,张爱玲,等.融合Logistic映射的混沌二进制萤火虫频谱分配策略[J].哈尔滨理工大学学报,2022,27(04):16-22.
[10]贾雅琼,俞斌.基于重复混沌扩频序列的差分混沌键控系统[J].计算物理,2022,39(04):491-497.
[11]李家强,陈焱博,徐才秀,等.基于FGG NUFFT的穿墙成像雷达快速BP算法[J].雷达科学与技术,2021,19(01):79-85+98.
[12]王树华,杨国杰,穆星.基于深度前馈神经网络方法的横波速度预测[J].油气地质与采收率,2022,29(01):80-89.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2023-02-07

基金项目:
高等学校大学数学教学研究与发展中心2022年教学改革项目:新时代高等数学教材建设的研究与探索(CMC20220508)

第一作者:
郑薇(1984-),女(汉族),陕西西安人,硕士研究生,副教授,研究方向:应用微分方程及其数学建模研究。
更新日期/Last Update: 1900-01-01