|本期目录/Table of Contents|

[1]高英剑,郭 平.基于改进A*算法的遥控水下机器人路径规划[J].工业仪表与自动化装置,2023,(03):75-79+121.[doi:10.19950/j.cnki.cn61-1121/th.2023.03.015]
 GAO Yingjian,GUO Ping.Path planning of remotely operated vehicle based on improved A* algorithm[J].Industrial Instrumentation & Automation,2023,(03):75-79+121.[doi:10.19950/j.cnki.cn61-1121/th.2023.03.015]
点击复制

基于改进A*算法的遥控水下机器人路径规划

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2023年03期
页码:
75-79+121
栏目:
出版日期:
2023-06-15

文章信息/Info

Title:
Path planning of remotely operated vehicle based on improved A* algorithm
文章编号:
1000-0682(2023)02-0075-05
作者:
高英剑郭 平
沈阳化工大学 信息工程学院,辽宁 沈阳 110142
Author(s):
GAO YingjianGUO Ping
Shenyang University of Chemical Technology, Liaoning Shenyang 110142, China
关键词:
遥控水下机器人路径规划A*算法B样条曲线
Keywords:
ROV path planning A* algorithm B spline
分类号:
U674.941;TP273
DOI:
10.19950/j.cnki.cn61-1121/th.2023.03.015
文献标志码:
A
摘要:
针对传统的A*算法在遥控水下机器人(Remotely Operated Vehicle, ROV)路径规划过程中表现出的效率慢、规划时间长,安全性差,生成的路径不平滑的问题,提出了一种优化的A*算法。首先,根据环境障碍物的比例自适应改变评价函数的权重,缩短路径规划的时间。其次,考虑到ROV的自身体积,在部分路径存在安全性问题,对该部分路径处的障碍物进行膨胀处理,保证路径的安全性和可行性。最后,通过3次均匀B样条曲线的方式消除不必要的拐点,同时使拐点处的转动更加平缓,提高路径的平滑度,更加符合ROV的运动特性。仿真结果表明,改进后的算法较传统A*算法搜索速度平均增快了53%,路径更加平缓,安全性也更高,更贴合ROV的实际运动。
Abstract:
Aiming at the problems of slow efficiency, long planning time, poor safety and unsmooth path of the traditional A* algorithm in the process of path planning of Remotely Operated Vehicle (ROV), an optimized A* algorithm is proposed. Firstly, the weight of the evaluation function is adaptively changed according to the proportion of environmental obstacles, which shortens the time of path planning. Secondly, considering the self-volume of the ROV, there are safety problems in part of the path, and the obstacles at the part of the path are expanded to ensure the safety and feasibility of the path. Finally, the unnecessary inflection point is eliminated by three uniform B-spline curves, and the rotation at the inflection point is smoother, the smoothness of the path is improved, and it is more in line with the motion characteristics of the underwater vehicle. The simulation results show that the improved algorithm has an average search speed of 53% faster than the traditional A* algorithm, the path is smoother, the safety is higher, and it is more in line with the actual movement of the ROV.

参考文献/References:

[1]孙玉山,王力锋,吴菁,等.智能水下机器人路径规划方法综述[J].舰船科学技术, 2020, 42(4):7.?div>[2]ZHAO H , ZHOU H , YANG G . Research on Global Path Planning of Artificial Intelligence Robot Based on Improved Ant Colony Algorithm[J]. Journal of Physics Conference Series, 2021, 1744(2):022032.

[3]申瑞, 刘佳, 王梦园,等. 改进A*算法的移动机器人路径规划设计[J]. 天津职业技术师范大学学报, 2022,32(01)14-19.?div>[4]HU Z , WANG Z , YIN Y . Research on 3D global path planning technology for UUV based on fusion algorithm[J]. Journal of Physics: Conference Series, 2021, 1871(1):012128 (9pp).
[5]PATTNAIK S K , MISHRA D , PANDA S . A comparative study of meta-heuristics for local path planning of a mobile robot[J]. Engineering Optimization, 2021:1-19.?/div>
[6]ZONG C , HAN X , ZHANG D , et al. Research on local path planning based on improved RRT algorithm[J]. Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering, 2021, 235(8):095440702199362.
[7]丁帅, 陈苗苗, 王猛,等. 基于RRT*算法的水下机器人全局路径规划方法[J]. 舰船科学技术, 2019(17):8.
[8]钱金伟. 水下探伤机器人监控系统设计及路径规划方法研究[D]. 镇江:江苏科技大学.
[9]随博文, 黄志坚. 基于改进A*算法的水面无人艇路径规划[J].舰船科学技术,2019,41(23):162-166.
[10]车建涛, 高方玉, 解玉文,等. 基于Dijkstra算法的水下机器人路径规划[J]. 机械设计与研究, 2020, 36(1):5.
[11]占银. 基于蚁群算法和人工势场法的水下机器人路径规划研究[D].长春:吉林大学.
[12]王妹婷, 陆柳延, 齐永锋,等. 基于模糊算法的水下机器人路径规划研究[J]. 机床与液压, 2014, 42(3):4.
[13]张巧荣, 张斌. 遗传算法在水下机器人路径规划中的应用[J]. 微计算机信息, 2006, 22(11Z):240-243.
[14]汪四新, 谭功全, 蒋沁,等. 基于改进A*算法的移动机器人路径规划[J]. 计算机仿真, 2021, 038(009):386-389+404.
[15] 李晓露,熊禾根,陶永,等.基于改进A*算法的移动机器人全局最优路径规划[J].高技术通讯,2021,31(03):306-314.
[16]王中玉, 曾国辉, 黄勃,等. 改进A*算法的机器人全局最优路径规划[J]. 计算机应用, 2019, 39(9):6.
[17]陈家宝, 文家燕, 谢广明. 基于改进A*算法的移动机器人路径规划[J]. 广西科技大学学报, 2022, 33(1):7.
[18]赵晓, 王铮, 黄程侃,等. 基于改进A算法的移动机器人路径规划[J]. 机器人, 2018(6):8.
[19]周超,谷玉海,任斌.基于一种改进A*算法的移动机器人路径规划研究[J].重庆理工大学学报(自然科学),2021,35(05):127-134.
[20]辛煜, 梁华为, 杜明博,等. 一种可搜索无限个邻域的改进A算法[J]. 机器人, 2014, 36(5):7.
[21]韩忠华, 冯兴浩, 吕哲,等. 一种改进的无人机路径规划环境建模方法[J]. 信息与控制, 2018, 47(3):8

相似文献/References:

[1]顾平灿,徐月同.基于QPSO的双机器人同步焊接路径规划研究[J].工业仪表与自动化装置,2015,(05):75.
 GU Pingcan,XU Yuetong.Research on path planning of synchronous welding of dual robot based on QPSO[J].Industrial Instrumentation & Automation,2015,(03):75.
[2]马学成.机床上下料设备控制系统设计及应用[J].工业仪表与自动化装置,2019,(03):81.[doi:1000-0682(2019)03-0000-00]
 MA Xuecheng.Design and application of control system for machine tool[J].Industrial Instrumentation & Automation,2019,(03):81.[doi:1000-0682(2019)03-0000-00]
[3]孟祥忠,刘 健,李 鹏.多AGV定位和路径规划方法研究[J].工业仪表与自动化装置,2019,(05):7.[doi:1000-0682(2019)05-0000-00]
 MENG Xiangzhong,LIU Jian,LI Peng.Research on multi-AGV location and path planning method[J].Industrial Instrumentation & Automation,2019,(03):7.[doi:1000-0682(2019)05-0000-00]
[4]唐兴贵,和文云,马志艳,等.基于S7-1200PLC和时域分析的工业机器人移动轨迹最优化规划方法[J].工业仪表与自动化装置,2022,(02):51.[doi:10.19950/j.cnki.cn61-1121/th.2022.02.011]
 TANG Xinggui,HE Wenyun,MA Zhiyan,et al.Optimal trajectory planning method of industrial robot based on s7-1200plc and time domain analysis[J].Industrial Instrumentation & Automation,2022,(03):51.[doi:10.19950/j.cnki.cn61-1121/th.2022.02.011]
[5]郭 茜,袁德成.基于改进RRT*算法的可重构机器人路径规划[J].工业仪表与自动化装置,2023,(03):70.[doi:10.19950/j.cnki.cn61-1121/th.2023.03.014]
 GUO Qian,YUAN Decheng.Path planning of reconfigurable robot based on improved RRT* algorithm[J].Industrial Instrumentation & Automation,2023,(03):70.[doi:10.19950/j.cnki.cn61-1121/th.2023.03.014]
[6]徐 洁,张 锐,汪志锋.改进蚁群算法在自动导引车路径规划中的应用[J].工业仪表与自动化装置,2023,(03):88.[doi:10.19950/j.cnki.cn61-1121/th.2023.03.018]
 XU Jie,ZHANG Rui,WANG Zhifeng.Application of improved ant colony algorithm in AGV path planning[J].Industrial Instrumentation & Automation,2023,(03):88.[doi:10.19950/j.cnki.cn61-1121/th.2023.03.018]
[7]王俊彭,等.基于蚁群算法的人员疏散机器人路径规划方法[J].工业仪表与自动化装置,2023,(04):77.[doi:10.19950/j.cnki.cn61-1121/th.2023.04.014]
 WANG Junpeng,,et al.Path planning method of personnel evacuation robot based on ant colony algorithm[J].Industrial Instrumentation & Automation,2023,(03):77.[doi:10.19950/j.cnki.cn61-1121/th.2023.04.014]
[8]田 悦,袁德成.基于多策略改进狼群算法的机械臂路径规划[J].工业仪表与自动化装置,2023,(05):76.[doi:10.19950/j.cnki.cn61-1121/th.2023.05.016]
 TIAN Yue,YUAN Decheng.Robot path planning based on multi strategy improved wolf pack algorithm[J].Industrial Instrumentation & Automation,2023,(03):76.[doi:10.19950/j.cnki.cn61-1121/th.2023.05.016]
[9]冯志强,李 磊,魏铭毅.基于改进蛇优化算法的轮式机器人路径规划[J].工业仪表与自动化装置,2024,(03):72.[doi:DOI:10.19950/j.cnki.CN61-1121/TH.2024.03.013]
 FENG Zhiqiang,LI Lei,WEI Mingyi.Wheeled robot path planning based on improved snake optimizer[J].Industrial Instrumentation & Automation,2024,(03):72.[doi:DOI:10.19950/j.cnki.CN61-1121/TH.2024.03.013]

备注/Memo

备注/Memo:
收稿日期:2023-02-17

第一作者:
高英剑(1998—),男,山东泰安人,硕士研究生,研究方向为遥控水下机器人路径规划与运动控制。
更新日期/Last Update: 1900-01-01