参考文献/References:
[1]魏星.矿井采煤区照明系统节能与安全控制技术研究[J].机电信息,2014(36):140-141.[2]李保君.LED公共照明系统在渤海石油矿区的应用及节能效果分析[J].资源节约与环保,2015,162(05):70-71.
[3]徐先荣.矿区站场照明节能降消系统应用[J].科技传播,2016,8(02):87+113.
[4]李高伟,李响初.基于MCS-51单片机的矿区住宅智能应急照明控制系统设计[J].世界有色金属,2016(19):29-30.
[5]SAADATSERESHT M, VARSHOSAZ M. Visibility prediction based on artificial neural networks used in automatic network design[J]. Photogrammetric Record, 2007, 22(120): 336-355.
[6]DUDDU V R , PULUGURTHA S S , MANE A S , et al. Back-propagation neural network model to predict visibility at a road link-level[J]. Transportation Research Interdisciplinary Perspectives, 2020, 8:100250.
[7]WANG H , SHEN K , YU P , et al. Multimodal Deep Fusion Network for Visibility Assessment With a Small Training Dataset[J]. IEEE Access, 2020(99):1-1.
[8]顾阔,焦瑞莉,薄宇,等.基于复合LSTM模型的PM2.5浓度预测[J/OL].中国环境监测:1-11[2023-03-01].
[9]朱菊香,谷卫,钱炜,等.基于IF-SVMD-BWO-LSTM的空气质量预测建模[J/OL].中国测试:1-12[2023-03-01].
[10]方楠,谢国权,阮小建,等.长短期记忆神经网络(LSTM)模型在低能见度预报中的应用[J].气象与环境学报,2022,38(05):34-41.
[11]张淑芬,董燕灵,徐精诚,等.基于目标扰动的AdaBoost算法[J].通信学报,2023,44(02):198-209.
[12]邹雯萧,郝润泽,吴令仪,等.基于AdaBoost-LSTM模型的语音情绪识别研究[J].数字通信世界,2022, 215(11):47-48+51.
[13]王勇. 基于多源数据和XGBoost算法的上海市能见度预测模型研究[D].上海:华东师范大学, 2019.
[14]YANG X, ZHUANG M A, YUAN S. Multi-class Adaboost algorithm based on the adjusted weak classifier[J]. Journal of Electronics & Information Technology, 2016, 38(2): 373-380.
[15]ZHANG X, DING J. An improved Adaboost face detection algorithm based on the different sample weights[C]// IEEE International Conference on Computer Supported Cooperative Work in Design.2016.
[16]王飞文. 基于物联网的城市路灯智慧照明控制系统研究[D]. 南昌:南昌航空大学, 2018.
[17]何沙. 基于云平台的智慧路灯管理系统关键技术研究[D]. 北京:北京邮电大学, 2018.
[18]江伟冲, 黄祖健, 谭小卫,等. 基于LoRa技术的冷却塔自组网远程监控系统[J]. 自动化与信息工程, 2019, 40(3): 16-19.
相似文献/References: