|本期目录/Table of Contents|

[1]冯张彬,熊福敏,王 健,等.MEMS多晶硅纳米膜压力传感器过载能力设计[J].工业仪表与自动化装置,2023,(04):89-92+97.[doi:10.19950/j.cnki.cn61-1121/th.2023.04.016]
 FENG Zhangbin,XIONG Fumin,WANG Jian,et al.Design of overload capacity for MEMS polysilicon nanomembrane pressure sensor[J].Industrial Instrumentation & Automation,2023,(04):89-92+97.[doi:10.19950/j.cnki.cn61-1121/th.2023.04.016]
点击复制

MEMS多晶硅纳米膜压力传感器过载能力设计

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2023年04期
页码:
89-92+97
栏目:
出版日期:
2023-08-15

文章信息/Info

Title:
Design of overload capacity for MEMS polysilicon nanomembrane pressure sensor
文章编号:
1000-0682(2023)03-0089-04
作者:
冯张彬熊福敏王 健赵立杰席宇欣
沈阳化工大学 信息工程学院, 辽宁 沈阳 110142
Author(s):
FENG ZhangbinXIONG FuminWANG JianZHAO LijieXI yuxin
School of information engineering,Shenyang University of Chemical Technology,Liaoning Shenyang 110142,China
关键词:
MEMS压力传感器多晶硅纳米膜过载能力有限元分析腔体高度
Keywords:
MEMS pressure sensor Polysilion nanomembrane Overload capacity Finite element analysis Cavity height
分类号:
TP212
DOI:
10.19950/j.cnki.cn61-1121/th.2023.04.016
文献标志码:
A
摘要:
针对MEMS压力传感器感压膜片受较大压力易发生断裂而导致传感器性能失效问题,提出了MEMS多晶硅纳米膜压力传感器过载能力设计的方法。采用厚度为80 nm多晶硅薄膜构建感压膜片结构,利用静态大变形和接触非线性有限元分析方法,分析感压膜片触底保护的腔体高度,在此基础上,进一步得出感压膜片尺寸与过载能力的关系,并重点讨论了不同传感器量程下改变膜片尺寸对过载能力的影响。仿真结果表明,所设计的1 MPa量程MEMS多晶硅纳米膜压力传感器,其过载能力8 MPa,为传感器量程8倍。本次研究为MEMS压力传感器的实际生产制备提供了新思路。
Abstract:
Aiming at the problem that the diaphragm of MEMS pressure sensor is prone to breakage under high pressure, which readily brings about the disability of its performance, a method for designing the overload capacity of MEMS polysilicon nanomembrane pressure sensor is proposed. A pressure sensitive diaphragm structure is constructed by using polysilicon film with a thickness of 80 nm, and the classical finite element methods, such as static large deformation and contact nonlinear, are introduced. First, the cavity height on bottom protection for a pressure sensitive diaphragm is analyzed. The relationship was then determined between the sizes of a pressure sensitive diaphragm and overload capacity. Particularly, the effects of the diaphragm size on overload capacity under different sensor ranges are mainly discussed. For the designed MEMS polysilicon pressure sensor with a range of 1 MPa, the simulation results show that its overload pressure is up to 8Mpa, which is 8 times the range of the sensor. The studies on its overload capacity furnishes a novel scheme for the practical application of MEMS pressure sensors.

参考文献/References:

[1] LIU D S, WEI S S, LIU C, et al.The study on the high-temperature performances of agraphene MEMS pressure sensor [J]. JOURNAL OF MATERIALS SCIE-NCE-MATERI-ALS IN ELECTRONICS, 2023, 34(9): 801.

[2] THAWORNSATHIT P, JUNTASARO E, RATTANASONTI H, et al.E-nhancing performance of a MEMS-based piezoresisti-ve pressure sensor by groove: investigation of groo-ve design using finite element method [J]. MICRO-MACHINES, 2022, 13(12): 2247.
[3] XU Z B, YAN J H, JI M L, et al. An SOI-structuredPiezoresistive differential pressure sensor with high performance [J]. MICROMACHINES, 2022, 13(12): 2250.
[4] WU C, FANG X D, GUO X, et al. Optimal design of SiC piezoresistive pressure sensor considering materialanisotropy [J]. REVIEW OF SCIENTIFIC INSTRUM-ENTS, 2020, 91(1): 15004.
[5] MEHMOOD Z, HANEEF I, UDREA F. Material selection f-or optimum design of MEMS pre-ssure sensors [J]. MICROSYSTEM TECHNOLOGIES-MICRO-AND N-ANOSYSTEMS-INFORMATION STORAGE AND P-ROCESSING SYSTEMS, 2020, 26(9): 2751-2766.
[6] 王健. 基于牺牲层技术的多晶硅纳米膜压力传感器芯片 [D]. 沈阳:沈阳工业大学, 2015.
[7] 揣荣岩. 多晶硅纳米薄膜压阻机理与特性的研究 [D]. 哈尔滨:哈尔滨工业大学, 2007.
[8] THAWORNSATHIT P, JUNTASARO E, RATTANASONTI H, et al. Mechanical diaphragm structure design of a MEMS-based piezoresistive pressure sensor for sensitivity a-nd linearity enhancement [J]. ENGINEERING JOUR-NAL-THAILAND, 2022, 26(5): 43-57.
[9] LE Q C, NGUYEN T K, TRINH X T, et al. Formulation of geometrically nonlinear numerical model for design of MEMS-based piezoresistive pressure sensor operating in the low-pressure range [J]. SENSING AND IMAGING, 2022, 23(1): 32.
[10]JINDAL S K, MAGAM S P, SHAKLYA M. Analytical modeling and simulation of MEMS piezoresistive pressure sensors with a square silicon carbide diaphragm as the primary sensing element under different loading conditions [J]. JOURNAL OF COMPUTATIONAL ELECTRONICS, 2018, 17(4): 1780-1789.?div>?11]LI C, ZHAO L, OCAA J L, et al. Characterization and analysis of a novel structural SOI piezoresistive press-ure sensor with high sensitivity and linearity [J]. Mic-rosystem Technologies, 2020, 25(10): 123-127.
[12]JINDAL S K, DE R, KUMAR A, et al. Novel MEMS piezoresistive sensor with hair-pin structure to enhance tensile and compressive sensitivity and correct non-linearity [J]. Journal of Electronic Testing, 2020, 36(1): 139-143.
[13]NAMAZU T, ISONO Y, TANAKA T. Evaluation of size effect on mechanical properties of single crystal silicon by nanoscale bending test using AFM [J]. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2000, 9(4): 450-459.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2023-04-25

基金项目:
国家重点研发计划(2018YFB1700200);
2020年辽宁省高等学校创新人才支持计划;
2021年度高等学校基本科研项目重点资助项目(LJKZ0442)

第一作者:
冯张彬(1994—),男,山西吕梁人,硕垦芯可饕邮挛⒒缦低成杓频难芯俊?/div>

通信作者:
熊福敏(1994—), 男,湖南常德人,硕士研究生,主要从事MEMS压力传感器的研究.E-mail:Xiongfumin_sycut@163.com
更新日期/Last Update: 1900-01-01