|本期目录/Table of Contents|

[1]侯成凯.轨道交通车辆牵引系统智能运维研究[J].工业仪表与自动化装置,2023,(05):107-111.[doi:10.19950/j.cnki.cn61-1121/th.2023.05.022]
 HOU Chengkai.Research on intelligent operation and maintenance of rail transit vehicle traction system[J].Industrial Instrumentation & Automation,2023,(05):107-111.[doi:10.19950/j.cnki.cn61-1121/th.2023.05.022]
点击复制

轨道交通车辆牵引系统智能运维研究

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2023年05期
页码:
107-111
栏目:
出版日期:
2023-10-15

文章信息/Info

Title:
Research on intelligent operation and maintenance of rail transit vehicle traction system
文章编号:
1000-0682(2023)05-0107-05
作者:
侯成凯
郑州地铁集团有限公司,河南 郑州 450047
Author(s):
HOU Chengkai
Zhengzhou Metro Group Co.,Ltd., Henan Zhengzhou 450047, China
关键词:
轨道交通故障诊断智能运维BP神经网络实时监控
Keywords:
rail transit fault diagnosis intelligent operation and maintenance BP neural network real-time monitoring
分类号:
U231
DOI:
10.19950/j.cnki.cn61-1121/th.2023.05.022
文献标志码:
A
摘要:
针对轨道交通车辆牵引系统的检修维护过程中,运维人员工作量繁琐、劳动强度大、运维效率低等问题,运用大数据和人工智能技术,构建轨道交通车辆牵引系统智能运维的整体架构和网络架构,完成6个应用系统和1个基础服务平台功能设计,提出了基于 BP 神经网络的智能决策算法,实现了车辆牵引系统运行设备的智能化管理,极大提高设备运维效率。最后,以车辆牵引系统中散热器为例,建立散热器热阻预测模型,应用BP神经网络智能决策算法,对设备健康状况进行评估,预测结果表明: 系统运行稳定可靠,预测误差小于0.2 ℃,对车辆牵引设备的健康状态能够精准诊断,为运维人员提供数据支撑和决策支持,提高轨道交通车辆牵引系统运行的可靠性具有重要意义。
Abstract:
In response to the problems of cumbersome workload, high labor intensity, and low efficiency of operation and maintenance personnel in the maintenance process of rail transit vehicle traction system, big data and artificial intelligence technologies are used to construct the overall architecture and network architecture of intelligent operation and maintenance of rail transit vehicle traction system. Six application systems and one basic service platform functional designs are completed, and an intelligent decision-making algorithm based on BP neural network is proposed, Realized intelligent management of vehicle traction system operating equipment, greatly improving equipment operation and maintenance efficiency. Finally, taking the radiator in the vehicle traction system as an example, a prediction model for the thermal resistance of the radiator is established. The BP neural network intelligent decision-making algorithm is applied to evaluate the health status of the equipment. The prediction results show that the system operates stably and reliably, with a prediction error of less than 0.2 ℃. It can accurately diagnose the health status of the vehicle traction equipment, providing data support and decision-making support for operation and maintenance personnel, Improving the reliability of the traction system of rail transit vehicles is of great significance.

参考文献/References:

[1] 张佳佳,高军伟. 基于IBA-LSSVM的轨道交通辅助逆变器故障诊断[J].工业仪表与自动化装置,2022(02):86-90.

[2] 杜周勃.轨道交通车辆智能检修系统设计研究[J].自动化技术与应用,2021,40(06):146-148+172.
[3] 董岳.基于“智慧地铁”的城市轨道交通智能运维模式创新研究[J].城市轨道交通研究,2022,25(03):240-241.
[4] 滕文.大数据时代下城市交通网络智能算法研究[J].计算机与数字工程,2020,48(08):1935-1938.
[5] 敬学德.基于改进LSSVM的城市轨道交通供电故障诊断方法[J].信息技术,2021(01):109-114+120.
[6] 路超,江海涛,孟昭明.城市轨道交通电力牵引动力负荷精准估计研究[J].电子设计工程,2022,30(17):81-84+89.
[7] 李海培.城市轨道交通云计算技术研究及应用[J].自动化与仪表,2022,37(05):99-103.
[8] 陶艳.地铁牵引供电系统自适应实时动态建模方法研究[J].机车电传动,2022(06):122-129.
[9] 王梦杰.孔德扬.基于BP神经网络的铁路客运站接驳方式研究[J].微型电脑应用,2023,39(03):4-7.
[10]彭丽宇,张进川,苟娟琼,等.基于BP神经网络的铁路轨道几何不平顺预测方法[J].铁道学报,2018,40(09):154-158.

相似文献/References:

[1]尹新权,王 珺,张亚萍.基于模糊理论的柴油机故障诊断专家系统[J].工业仪表与自动化装置,2015,(01):111.
 YIN Xinquan,WANG Jun,ZHANG Yaping.Fault diagnostic expert system of diesel engine based on fuzzy theory[J].Industrial Instrumentation & Automation,2015,(05):111.
[2]孟文俊a,徐光华a,b,等.基于LabVIEW的滚动轴承非平稳过程监测诊断及性能评估系统的开发[J].工业仪表与自动化装置,2015,(02):18.
 MENG Wenjuna,XU Guanghuaa,b,et al.Development of non-stationary process for rolling bearing fault diagnosis and performance evaluation system based on LabVIEW[J].Industrial Instrumentation & Automation,2015,(05):18.
[3]李 茜,王延年.基于普通铣床数控化的S7-300 PLC远程监控和故障诊断系统设计[J].工业仪表与自动化装置,2015,(02):49.
 LI Qian,WANG Yannian.Design of remote monitoring and fault diagnosis systembased on the ordinary milling machine of numerical control of S7-300 PLC[J].Industrial Instrumentation & Automation,2015,(05):49.
[4]巴寅亮,王书提,谢 鑫.基于改进的BP神经网络的柴油发动机故障诊断[J].工业仪表与自动化装置,2015,(03):94.
 BA Yinliang,WANG Shuti,XIE Xin.Research of diesel engine fault based on improved BP neural network[J].Industrial Instrumentation & Automation,2015,(05):94.
[5]王江荣,文 晖,黄建华.基于差分进化算法的二次回归在矿井通风机故障诊断中的应用[J].工业仪表与自动化装置,2015,(01):50.
 WANG Jiangrong,WEN Hui,HUANG Jianhua.The two regression in ventilator fault diagnosis application based on difference evolutionary algorithm[J].Industrial Instrumentation & Automation,2015,(05):50.
[6]朱 祁,崔 伟,朱微维.轨道交通闭路电视监控系统的仿真实现[J].工业仪表与自动化装置,2017,(02):123.
 ZHU Qi,CUI Wei,ZHU Weiwei.Simulated implementation of CCTV monitoring system for rail transit[J].Industrial Instrumentation & Automation,2017,(05):123.
[7]张卫峰,惠俊军.智能故障诊断技术的现状及展望[J].工业仪表与自动化装置,2017,(05):21.
 ZHANG Weifeng,HUI Junjun.The present situation and prospects of intelligence fault diagnosis technology[J].Industrial Instrumentation & Automation,2017,(05):21.
[8]宫玮丽,梁 波,王晓兰.基于小波包和Hilbert包络分析的隧道掘进机主轴承故障诊断方法研究[J].工业仪表与自动化装置,2018,(02):15.[doi:1000-0682(2018)02-0000-00]
 GONG Weili,LIANG Bo,WANG Xiaolan.Research on fault diagnosis method of main bearing of tunnel boring machine based on wavelet packet and Hilbert envelope analysis[J].Industrial Instrumentation & Automation,2018,(05):15.[doi:1000-0682(2018)02-0000-00]
[9]席 维,白 璘,武奇生.基于经验小波变换和峭度值的滚动轴承故障检测方法[J].工业仪表与自动化装置,2018,(06):26.[doi:1000-0682(2018)06-0000-00]
 XI Wei,BAI Lin,WU Qisheng.A novel rolling bearing fault detection method based on empirical wavelet transform and kurtosis value[J].Industrial Instrumentation & Automation,2018,(05):26.[doi:1000-0682(2018)06-0000-00]
[10]张远绪,程换新.基于改进的RBF神经网络的滚动轴承故障诊断[J].工业仪表与自动化装置,2018,(06):31.[doi:1000-0682(2018)06-0000-00]
 ZHANG Yuanxu,CHENG Huanxin.Fault diagnosis of rolling bearing based on improved RBF neural network[J].Industrial Instrumentation & Automation,2018,(05):31.[doi:1000-0682(2018)06-0000-00]

备注/Memo

备注/Memo:
收稿日期:2023-05-19

第一作者:
侯成凯(1986—),男,河南焦作人,学士,工程师,研究方向为交通运输、机车车辆。
更新日期/Last Update: 1900-01-01