|本期目录/Table of Contents|

[1]熊锦玲,曾 辉.工业高精度压力变送器非线性温度影响补偿方法研究[J].工业仪表与自动化装置,2023,(06):108-113.[doi:DOI:10.19950/j.cnki.cn61-1121/th.2023.06.019]
 XIONG Jinling,ZENG Hui.Research on compensation method for nonlinear temperature effect of industrial high precision pressure transmitters[J].Industrial Instrumentation & Automation,2023,(06):108-113.[doi:DOI:10.19950/j.cnki.cn61-1121/th.2023.06.019]
点击复制

工业高精度压力变送器非线性温度影响补偿方法研究

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2023年06期
页码:
108-113
栏目:
出版日期:
2023-12-15

文章信息/Info

Title:
Research on compensation method for nonlinear temperature effect of industrial high precision pressure transmitters
文章编号:
1000-0682(2023)06-0108-00
作者:
熊锦玲1曾 辉2
1.长江三峡通航管理局,湖北 宜昌 443500;
2.中国长江电力股份有限公司,湖北 宜昌 443002
Author(s):
XIONG Jinling1 ZENG Hui2
1.Three Gorges Navigation Authority, Hubei Yichang 443500, China;
2.China Yangtze Power Co., Ltd.;Hubei Yichang 443002, China
关键词:
压力变送器三阶多项式BP神经网络非线性温度影响反函数
Keywords:
pressure transmitter third order polynomial BP neural network nonlinear temperature effect inverse function sgriqi
分类号:
TP212
DOI:
DOI:10.19950/j.cnki.cn61-1121/th.2023.06.019
文献标志码:
A
摘要:
温度的大幅度波动会导致工业高精度压力变送器中的材料膨胀或收缩,引起压力变送器的输出值产生漂移。为了保证压力变送器的准确性和稳定性,提出一种基于BP神经网络的智能化温度影响补偿方法。分析温度对压力变动器的非线性影响,计算出零点温度漂移系数和灵敏度系数。通过函数特征化处理标准输出-压力曲线,根据零点温度漂移系数和灵敏度系数计算标准输出-压力曲线的误差,利用三阶多项式反函数对标准输出-压力曲线的误差进行线性化处理误差,用于校正压力变动器输出值。通过正反向传播算法多次训练反向传播神经网络(Back Propagation Neural Network,BP)修正各层间连接权重值,将校正后的压力变动器的输出值输入到已经训练好的网络中,待结果小于预设误差阈值或者达到最大迭代次数时,输出温度影响补偿结果。经模拟实验证明,所提方法可在-20 ℃~60 ℃区间内,妥善补偿因温度剧烈变化导致的压力变送器误差值,补偿后最大相对误差仅为0.5%,补偿精度高,效果好。
Abstract:
Large fluctuations in temperature can cause material expansion or contraction in industrial high-precision pressure transmitters, leading to drift in the output value of the pressure transmitter. To ensure the accuracy and stability of pressure transmitters, an intelligent temperature impact compensation method based on BP neural network is proposed. Analyze the nonlinear effect of temperature on the pressure regulator, calculate the zero temperature drift coefficient and sensitivity coefficient, process the standard output pressure curve through function characterization, calculate the error of the standard output pressure curve according to the zero temperature drift coefficient and sensitivity coefficient, and use the third-order polynomial Inverse function to linearize the error of the standard output pressure curve to correct the output value of the pressure regulator. The back propagation neural network (BP) is trained many times through the forward Backpropagation to correct the connection weight value between layers, and the output value of the corrected pressure regulator is input into the trained network. When the result is less than the preset error threshold or reaches the maximum number of iterations, the output temperature affects the compensation result. Through simulation experiments, it has been proven that the proposed method can effectively compensate for the error value of the pressure transmitter caused by drastic temperature changes within the range of -20 ℃ -60 ℃. After compensation, the maximum relative error is only 0.5%, with high compensation accuracy and good effect.

参考文献/References:

[1]朱志峰,张海宁.压力变送器非线性校准及温度补偿方法的研究[J].电子测量技术,2021,44(21):71-76.

[2]马宏光,曾国辉,黄勃.基于WOA-BP的压力变送器温度补偿研究[J].仪表技术与传感器,2020(06):33-36.
[3]聂梦笛,郑刚,张雄星,等.调频连续波干涉光纤压力传感器的温度漂移补偿[J].激光与光电子学进展,2022,59(07):348-356.
[4]潘慕绚,刘杨琳,李瑜.面向硅压阻式压力传感器温度补偿的组合方法[J].航空动力学报,2021,36(06):1188-1196.
[5]黄秀珍.基于温度补偿算法的精密压力传感器设计[J].集成电路应用,2023,40(05):16-18.
[6]张翔,曹宏发,温熙圆,等.基于迭代学习的压力传感器温度补偿方法[J].铁道机车车辆,2023,43(01):83-87.
[7]申晓敏,钱礼华,杜剑英,等.火箭橇用气动压力传感器在模拟试验温度下的标定方法[J].测控技术,2023,42(02):37-41+48.
[8]高炳涛,刘溢,董阿彬,等.贴片式压力传感器温度响应特性校准装置温压影响研究[J].宇航计测技术,2022,42(06):1-7.
[9]周志炜,邓天雨,师亮,等.压阻式压力传感器的温度补偿及现场校准方法[J].传感器与微系统,2022,41(10):145-148.
[10]周蒙,何峰,张龙赐,等.宽温区高精度压力传感器补偿方法研究[J].自动化与仪表,2022,37(04):85-88.
[11]张宝良,刘胜军.参数补偿对质量流量计的准确度影响分析[J].工业计量,2020,30(05):18-20.
[12]叶敏.基于HART协议的高精度单晶硅压力变送器[J].工业控制计算机,2020,33(06):79-80.
[13]胡永良,郑永富.一种扩散硅压力变送器的设计[J].中国计量,2023(04):55-58.
[14]吕鹏勃,何志强.智能压力变送器的功能安全自诊断[J].自动化与仪器仪表,2023(04):301-304.
[15]刘新天,彭泳,何耀,等.基于温度补偿的动力锂电池SOC估算方法[J].计算机仿真,2021,38(05):66-69+328.

相似文献/References:

[1]苏 航.弹簧管智能压力变送器的设计[J].工业仪表与自动化装置,2015,(03):107.
 SU Hang.The design of the spring tube intelligent pressure transmitter[J].Industrial Instrumentation & Automation,2015,(06):107.
[2]徐 畔.压力变送器在石膏法脱硫装置中的应用[J].工业仪表与自动化装置,2019,(01):109.[doi:1000-0682(2019)01-0000-02]
 XU Pan.Application of pressure transmitter in gypsum desulphurization device[J].Industrial Instrumentation & Automation,2019,(06):109.[doi:1000-0682(2019)01-0000-02]
[3]段晓帅,邓天雨.多通道高精度数字压力变送器误差补偿系统设计[J].工业仪表与自动化装置,2023,(03):17.[doi:10.19950/j.cnki.cn61-1121/th.2023.03.004]
 DUAN Xiaoshuai,DENG Tianyu.Multi-channel, high-precision digital pressure transmitter error compensation system design[J].Industrial Instrumentation & Automation,2023,(06):17.[doi:10.19950/j.cnki.cn61-1121/th.2023.03.004]

备注/Memo

备注/Memo:
收稿日期:2023-07-17

第一作者:
熊锦玲(1988—),女,土家族,湖北宜昌人,硕士研究生,技术员,研究方向为检测技术与自动化装置。

通信作者:
曾辉(1976—),男,汉族,湖北宜昌人,硕士研究生,高级工程师,研究方向为水利枢纽智能运维。
更新日期/Last Update: 1900-01-01