|本期目录/Table of Contents|

[1]张福祥,石生斌,赵元军,等.以废弃洞穴为储气空间复合压缩空气储能系统及其热力学性能分析[J].工业仪表与自动化装置,2023,(06):11-18+25.[doi:DOI:10.19950/j.cnki.cn61-1121/th.2023.06.002]
 ZHANG Fuxiang,SHI Shengbin,ZHAO Yuanjun,et al.Composite compressed air energy storage system using abandoned caves as storage space and its thermodynamic performance analysis[J].Industrial Instrumentation & Automation,2023,(06):11-18+25.[doi:DOI:10.19950/j.cnki.cn61-1121/th.2023.06.002]
点击复制

以废弃洞穴为储气空间复合压缩空气储能系统及其热力学性能分析

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2023年06期
页码:
11-18+25
栏目:
出版日期:
2023-12-15

文章信息/Info

Title:
Composite compressed air energy storage system using abandoned caves as storage space and its thermodynamic performance analysis
文章编号:
1000-0682(2023)06-0011-09
作者:
张福祥1石生斌1赵元军1张明虎2令兰宁3 王焕然3*
1.黄河上游水电开发有限责任公司,810008 青海 西宁;
2.焦作市公路事业发展中心,454152 河南 焦作;
3.西安交通大学能源与动力工程学院,710049 陕西 西安
Author(s):
ZHANG Fuxiang 1 SHI Shengbin 1 ZHAO Yuanjun 1 ZHANG Minghu 2 LING Lanning 3 WANG Huanran 3*
1.Upper Yellow River Hydropower Development Co., Xining 810008, China;?div>2. Jiaozuo Highway Business Development Center, Jiaozuo 454152, China;?/div>
3. School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
关键词:
废弃洞穴压缩空气储能复合压缩空气热力学分析
Keywords:
abandoned cavescompressed air energy storagecompound compressed airthermodynamic analysis
分类号:
TK02
DOI:
DOI:10.19950/j.cnki.cn61-1121/th.2023.06.002
文献标志码:
A
摘要:
针对废弃洞穴再利用、压缩空气储能系统储气空间成本高等问题,该文提出了一种以废弃洞穴为储气空间复合压缩空气储能系统,通过建立系统的热力学模型,研究了典型工况下系统关键参数和热力学性能的演化规律,揭示了不同运行特征下系统的储能密度和效率变化趋势。研究结果表明:随着双罐的循环次数的增加,系统中空气质量流量和单次循环水泵耗功都增大;储气洞穴热力参数在储能时存在8次波动,波动的次数由双罐的循环次数决定;在释能阶段,储气洞穴的温度变化存在两个阶段:温度骤降阶段和骤降变缓阶段,形成是由于空气膨胀和空气与洞穴壁换热的双重作用;储能密度在多变压缩机压比为3.6时达到最大值为2.47 kW?h/m3,而系统效率在压比为3.5时达到最佳值为76.4%;储气洞穴容积随压缩机压比一直增大,这会导致储能系统经济性降低;应综合考虑储能密度、系统效率和储气洞穴容积来设置系统设备参数,多变压缩机压比参数选取应在3.5~3.6之间。
Abstract:
To address the problems of reuse of abandoned caves and high cost of compressed air storage space in compressed air energy storage system, this paper proposes a composite compressed air energy storage system with abandoned caves as the storage space. By establishing the thermodynamic model of the system, the evolution law of key parameters and thermodynamic performance of the system under typical working conditions is studied, and the trends of energy storage density and system efficiency changes of the system under different operating characteristics are revealed. The research results show that: with the increase of the cycle number of double tanks, the air mass flow rate and the work consumption of single cycle pump in the system increase. There are 8 fluctuations of air flow rate in the storage chamber, and the number of fluctuations is determined by the cycle number of double tanks. In the energy release stage, there are two stages of temperature change in the storage cavern: the temperature plunge stage and the plunge slow stage, which are formed due to the dual action of air expansion and heat exchange between air and cavern wall. The energy storage density reaches the maximum value of 2.47 kW?h/m3 when the pressure ratio of multivariable compressor is 3.6, and the system efficiency reaches the best value of 76.4% when the pressure ratio is 3.5. The volume of gas storage cavern increases with the pressure ratio of compressor, which leads to the reduction of the economy of energy storage system. The system equipment parameters should be set by considering the energy storage density, system efficiency and gas storage cavern volume, and the multivariable. The compressor pressure ratio parameter should be selected between 3.5~3.6.

参考文献/References:

[1] 杨培志, 陈嘉鹏, 陈君文, 等. 双U型地埋管换热器换热性能模拟分析[J]. 中南大学学报: 自然科学版, 2021, 52(6): 6.

[2] 谢和平, 高明忠, 刘见中, 等. 煤矿地下空间容量估算及开发利用研究[J] 煤炭学报, 2018, 43(06): 1487–1503.
[3] KUSHNIR R, DAYAN A, ULLMANN A. Temperature and pressure variations within compressed air energy storage caverns[J]. International journal of heat and mass transfer, 2012,55(21-22):5616-5630.
[4] BARBOUR E , MIGNARD D , DING Y ,et al.Adiabatic compressed air energy storage with packed bed thermal energy storage[J].Applied Energy, 2015, 155:804-815.
[5] 黄景坚, 赵攀, 王佩姿, 等. 热电共蓄式压缩空气储能系统特性研究[J]. 工程热物理学报, 2020,41(06):1300-1307.
[6] BAGDANAVICIUS A , JENKINS N .Exergy and exergoeconomic analysis of a compressed air energy storage combined with a district energy system[J].Energy Conversion & Management, 2014, 77:432-440.
[7] 刘士名. 先进绝热压缩空气储能系统热力性能与经济性分析[D]. 北京: 华北电力大学, 2016.
[8] SAMPEDRO E O , DAZIN A , COLAS F,et al.Multistage radial flow pump - turbine for compressed air energy storage: experimental analysis and modeling[J].Applied Energy, 2021, 289(1):116705.
[9] WOODFIELD P L , MONDE M , MITSUTAKE Y .Measurement of averaged heat transfer coefficients in high-pressure vessel during charging with hydrogen, nitrogen or argon gas[J].Journal of Thermal Science and Technology, 2007, 2(2):180-191.
[10] LI R, TAO R, YAO E, et al. Comprehensive thermo-exploration of a near-isothermal compressed air energy storage system with a pre-compressing process and heat pump discharging[J]. Energy, 2023, 268.
[11] HNCHEN M ,SARAH Brückner, STEINFELD A .High-temperature thermal storage using a packed bed of rocks – Heat transfer analysis and experimental validation[J].Applied Thermal Engineering, 2011, 31(10):1798-1806.
[12] HE W , WANG J , WANG Y ,et al.Study of cycle-to-cycle dynamic characteristics of adiabatic Compressed Air Energy Storage using packed bed Thermal Energy Storage[J].Energy, 2017, 141(PT.2):2120-2134.
[13] HE X, WANG H, TAO F, et al. Performance analysis of constant-pressure pumped hydro combined with compressed air energy storage system considering off-design model of compressor[J]. Energy and Power Engineering, 2021, 13: 11-18.
[14] KHALEGHI S, ASIAEI S, SIAVAVASHI M. A smart grid poly-generation design for hot arid regions composed of multi-effect distillation (MED), compressed air energy storage (CAES), and parabolic trough solar collector field (PTSC)[J]. JOURNAL OF CLEANER PRODUCTION, 2022, 372.
[15] YAO E, WANG H, LIU L, et al. A novel constant-pressure pumped hydro combined with compressed air energy storage system[J]. ENERGIES, 2015, 8(1): 154-171.

相似文献/References:

备注/Memo

备注/Memo:
投稿日期:2023-08-18

基金项目:
国家自然科学基金资助项目(51676151)

第一作者:
张福祥(1971),男,教授级高级工程师,压缩空气储能相关领域研究.

通信作者:
王焕然(1965),男,教授,博士生导师,抽水压缩空气储能与等温压缩空气储能.
更新日期/Last Update: 1900-01-01