|本期目录/Table of Contents|

[1]鲍海泉,方瑞寅.基于BP神经网络的目标识别算法和多源感知技术相融合的GIS性能检测方法[J].工业仪表与自动化装置,2024,(02):97-100+117.[doi:DOI:10.19950/j.cnki.CN61-1121/TH.2024.02.017]
 BAO Haiquan,FANG Ruiyin.GIS performance detection method based on the fusion of target recognition algorithm and multi-source perception technology using BP neural network[J].Industrial Instrumentation & Automation,2024,(02):97-100+117.[doi:DOI:10.19950/j.cnki.CN61-1121/TH.2024.02.017]
点击复制

基于BP神经网络的目标识别算法和多源感知技术相融合的GIS性能检测方法(PDF)

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2024年02期
页码:
97-100+117
栏目:
出版日期:
2024-04-15

文章信息/Info

Title:
GIS performance detection method based on the fusion of target recognition algorithm and multi-source perception technology using BP neural network
文章编号:
1000-0682(2024)02-0097-04
作者:
鲍海泉方瑞寅
(国网湖北省电力有限公司 襄阳供电公司,湖北 襄阳 441000)
Author(s):
BAO Haiquan FANG Ruiyin
(Xiangyang power supply company, State Grid Hubei Electric Power Co., Ltd., Hubei Xiangyang 441000, China)
关键词:
目标识别多源感知GIS作业神经网络性能检测
Keywords:
target identification multi source perception GIS operation neural network performance testing
分类号:
TP391.41
DOI:
DOI:10.19950/j.cnki.CN61-1121/TH.2024.02.017
文献标志码:
A
摘要:
针对传统多源感知检测方法在气体绝缘全封闭组合电器(Gas Insulated Switchgear,GIS)作业中性能检测数据准确度不足的问题,设计了一种基于目标识别算法和多源感知技术相融合的GIS性能检测方法。在传统性能检测技术中引入以BP神经网络为核心的目标识别算法,通过BP多层神经网络,实现了高效地数据目标提取,大幅提高了数据检测的准确度。为解决单一传感器不能完整地捕捉复杂环境信息的问题,基于多源感知技术,采用多个传感器对多个数据源进行综合感知,扩展了环境视角与信息维度,实现了对周围环境的全方位监控,使检测系统获得了更为理想的数据检测能力。在实际GIS运行环境中进行实地检测,将所提出的改进多源感知方法与传统多源感知方法进行了实验对比。结果表明,所提方法能够将GIS性能检测的准确度提高至98%以上。
Abstract:
A GIS(Gas Insulated Switchgear) performance detection method based on the fusion of target recognition algorithm and multi-source perception technology is designed to address the issue of insufficient accuracy in detecting data in traditional multi-source perception detection methods in GIS operations. Introducing a target recognition algorithm based on the BP neural network algorithm as the core in traditional performance detection techniques, the BP multi-layer neural network achieves efficient data target extraction and greatly improves the accuracy of data detection. To solve the problem of a single sensor not being able to fully capture complex environmental information, based on multi-source perception technology, multiple sensors are used to comprehensively perceive multiple data sources, expanding the environmental perspective and information dimension, achieving comprehensive monitoring of the surrounding environment, and enabling the detection system to achieve more ideal data detection capabilities. Field testing was conducted in an actual GIS operating environment, and the proposed improved multi-source perception method was experimentally compared with traditional multi-source perception methods. The results showed that the proposed method can improve the accuracy of GIS performance detection to over 98%.

参考文献/References:

[1]蒋西平,李永福,王谦,等.基于声学成像的GIS设备异响振动缺陷检测技术研究[J].高压电器,2023,59(10):215-222,231.

[2]贺毅,张靖,张英,等.基于CFD技术的GIS设备中SO2扩散效应[J].电子科技,2023,36(4):21-28.
[3]李波,胡秀敏,何志琴等.X射线无损检测的GIS设备缺陷检测研究[J].电子设计工程,2021,29(1):78-82.
[4]彭勇,张利,汤会增,等.局部放电对GIS盆式绝缘子绝缘劣化程度的评估研究[J].内蒙古电力技术,2023,41(2):37-44.
[5]韩世杰,吕泽钦,隋浩冉,等.基于EFPI传感器的GIS局部放电模式识别研究[J].电力工程技术,2022,41(1):149-155.
[6]王赞,郑理威,陈忠贤,等.基于光纤EFPI传感器的GIS局部放电研究[J].电网与清洁能源,2022,38(2):67-75.
[7]陈捷元,葛志成,祝晓宏,等.基于多信息融合的GIS局部放电类型识别方法研究[J].科学技术与工程,2023,23(12):5094-5101.
[8]吴明兴,谷昊霖,别佩,等.基于萤火虫算法改进BP神经网络的电力用能行为预测方法[J].沈阳工业大学学报,2023,45(3):241-246.
[9]陈宝奇,周再祥,张强.基于混沌麻雀搜索算法优化BP神经网络的短期风电功率预测[J].工业仪表与自动化装置,2022(6):13-17.
[10]姜海燕.基于BP神经网络的牵引供电系统的故障预测研究[J].工业控制计算机,2022,35(6):82-84.
[11]曹培,徐鹏,贺建明,等.基于多源感知的开关柜绝缘缺陷检测技术[J].中国电力,2021,54(10):117-124,133.
[12]陈明,张文静,赵杰.基于多源感知的电力工程数据信息处理与识别技术研究[J].电子设计工程,2023,31(4):178-182.
[13]祝小钧.多源感知网络中数据融合方法研究与应用[D].重庆:重庆邮电大学,2022:23-46.
[14]王鹏,杨雨君,陈曼龙,等.分布式质量块结构高g值加速度传感器仿真分析[J].仪表技术与传感器,2023(5):19-24,29.
[15]但丁谊,丁克勤,舒安庆.基体封装式光纤布拉格光栅传感器的应变传递及其影响因素[J].激光与光电子学进展,2022,59(5):147-155.
[16]张芮,朱姿娜.柔性电涡流式触觉传感器性能仿真与分析[J].仪表技术与传感器,2021(6):16-20,25.

相似文献/References:

[1]薛 彪,张松飞,赵 莉.基于单目视觉的近景摄影测量在振动台试验中的应用[J].工业仪表与自动化装置,2015,(03):44.
 XUE Biao,ZHANG Songfei,ZHAO Li.Application of close-range photogrammetry based on monocular vision in shaking table test[J].Industrial Instrumentation & Automation,2015,(02):44.
[2]马文倩.混合动力汽车转向稳定性多传感器融合控制技术[J].工业仪表与自动化装置,2024,(03):95.[doi:DOI:10.19950/j.cnki.CN61-1121/TH.2024.03.017]
 MA Wenqian.Multi sensor fusion control technology for steering stability of hybrid electric vehicles[J].Industrial Instrumentation & Automation,2024,(02):95.[doi:DOI:10.19950/j.cnki.CN61-1121/TH.2024.03.017]

备注/Memo

备注/Memo:
收稿日期:2023-11-10基金项目:湖北省科技计划项目(H2021RCDT2B0357)。第一作者:鲍海泉(1985—),女,汉族,湖北襄阳人,本科,高级工程师,研究方向为电网建设工程。
更新日期/Last Update: 1900-01-01