|本期目录/Table of Contents|

[1]段彩丽,呼 浩,郭前鑫,等.基于长短期记忆网络汽轮机振动幅值预测[J].工业仪表与自动化装置,2024,(02):118-123+142.[doi:DOI:10.19950/j.cnki.CN61-1121/TH.2024.02.021]
 DUAN Caili,HU Hao GUO Qianxing ZHAO Yonggang MAChi ZHANG Jiansheng GUO Jindong.Prediction of turbine vibration amplitude based on long short-term memory network[J].Industrial Instrumentation & Automation,2024,(02):118-123+142.[doi:DOI:10.19950/j.cnki.CN61-1121/TH.2024.02.021]
点击复制

基于长短期记忆网络汽轮机振动幅值预测(PDF)

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2024年02期
页码:
118-123+142
栏目:
出版日期:
2024-04-15

文章信息/Info

Title:
Prediction of turbine vibration amplitude based on long short-term memory network
文章编号:
1000-0682(2024)02-0118-06
作者:
段彩丽1呼 浩1郭前鑫1赵勇纲1马 驰2张建生2郭晋东3
(1.国家能源集团 国神技术研究院, 陕西 西安 710000;2..国家能源集团 国源电力有限公司, 陕西 西安 7100003.华北电力大学 国家火力发电中心 北京 102200)
Author(s):
DUAN Caili1HU Hao1 GUO Qianxing1 ZHAO Yonggang1 MAChi2 ZHANG Jiansheng2 GUO Jindong3
(1.Guoshen Technology Research Institute of National Energy Group,ShanXi Xi’an, 710000, China;2.National Energy Group Guoyuan Power Co., Ltd,ShanXi Xi’an, 710000, China;3. North China Electric Power University,Beijing 102200, China)
关键词:
SSA-LSTM汽轮振动幅值结合方法高精度预测
Keywords:
SSA-LSTMvibration amplitudecombined methodhigh-precision prediction
分类号:
TK39
DOI:
DOI:10.19950/j.cnki.CN61-1121/TH.2024.02.021
文献标志码:
B
摘要:
火电机组的主轴振动幅值具有非线性,非平稳,时序相关,且与当前历史状态密不可分的特点,而实际火电厂所提取数据往往呈现无规则,长时间,数据量庞大的特点。提出了由麻雀搜索算法(SSA)进行优化的的长短期记忆网络(LSTM)相结合构建深度学习预测模型,对汽轮机主轴的振动幅值进行更高精度的预测模拟。相较于非时序神经网络模型和无优化时序神经网络模型预测性能大大提高。
Abstract:
The main axis vibration value of thermal power unit is non -linear, non -stable, sequentially related, and is inseparable from the current historical state. The data extracted by actual thermal power plants often show irregularities. For a long time, the data volume is huge. A long -term memory network (LSTM) that is optimized by the sparrow search algorithm (SSA) is proposed to build a deep learning predictive model, and the vibration amplitude of the spherical spindle of the steam turbine is made of higher accuracy and simulation. Compared with non -time -order neural network models and no optimized timing neural network model prediction performance greatly improved.

参考文献/References:

[1]吴昕,刘双白,郝向中,等.供热工况下的汽轮机振动长周期预测与分析[J].热能动力工程,2022,37(03): 72-80.

[2]王军,马小越,张宇航,等.基于SSA-LSTM模型的黄河水资源调度研究[J/OL].人民黄河:1-5[2023-09-07].http: //kns.cnki.net/kcms/detail/41.1128.TV.20230816.1346.010.html
[3]国洪立,陈时熠,唐寅,等.基于PCA-SSA-LSTM的余热锅炉状态监测模型[J/OL].热力发电:1-9[2023-09-07].DOI: 10.19666/j.rlfd.202212289.
[4]冷丽英,付建哲,宁波.基于SSA-LSTM模型的IGBT时间序列预测研究[J].半导体技术,2023,48(01):66-72.
[5]SAADAT B,HAFAIFA A,BELHADEF R, et al. Fuzzy Prognosis System for Decision Making to Vibrations Monitoring in Gas Turbine[J]. Strojnícky ?asopis - Journal of Mechanical Engineering,2021,71(2).
[6]徐翠翠,杨淑娟,许卫晓.基于多层感知机的仪器地震烈度评估方法研究[J/OL].防灾减灾工程学报:1-9 [2023-09-07].DOI:10.13409/j.cnki.jdpme.20220823001.
[7]李劲松,张双,董泽,等.基于VMD-WOA-LSSVM的汽轮机轴承振动趋势预测[J].山东电力技术,2021,48(12):61-67.
[8]薛建凯. 一种新型的群智能优化技术的研究与应用[D].上海:东华大学,2020.[9]吴昕,刘双白,郝向中,等.供热工况下的汽轮机振动长周期预测与分析[J].热能动力工程,2022,37(03):72-80.
[10]DIGALAKIS J G , MARGARITIS K G .On benchmarking functions for genetic algorithms[J].International Journal of Computer Mathematics, 2001, 77(4):481-506.
?[11] JAMIL M , YANG X S . A literature survey of benchmark functionsfor global optimization problems[J]. International Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4(2): 150-194.?/div>
[12]李中,路宇,王鑫,等.基于ABC-LSTM的变压器表面振动基频幅值预测[J].工业控制计算机,2021,34(06):21-23+26.
[13]马宏忠,赵宏飞,陈楷,等.基于振动的变压器铁心松动判定方法[J].电力系统自动化,2013,37(14):101-106
[14]韩中合,焦宏超,徐搏超,等.基于EEMD样本熵和SVM的振动故障诊断研究[J].汽轮机技术,2015,57(06):457-460.
[15]徐搏超.基于HVD和相关向量机的转子多故障分类优化[D].保定:华北电力大学,2017.
[16]李浩瀚. 燃气轮机控制系统执行器的复合故障诊断研究[D].北京:华北电力大学(北京),2022.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2023-11-16第一作者:段彩丽(1973—),性别:女,山西朔州人,本科,高级工程师,研究方向为火电热工自动化、智能电站。
更新日期/Last Update: 1900-01-01