|本期目录/Table of Contents|

[1]白 蕾,苑易伟*,胡 平,等.基于双环控制的光伏制氢变流器设计与仿真[J].工业仪表与自动化装置,2024,(02):130-135.[doi:DOI:10.19950/j.cnki.CN61-1121/TH.2024.02.023]
 BAI Lei,YUAN Yiwei*,HU Ping,et al.Design and simulation of photovoltaic hydrogen production converter based on dual-loop control[J].Industrial Instrumentation & Automation,2024,(02):130-135.[doi:DOI:10.19950/j.cnki.CN61-1121/TH.2024.02.023]
点击复制

基于双环控制的光伏制氢变流器设计与仿真(PDF)

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2024年02期
页码:
130-135
栏目:
出版日期:
2024-04-15

文章信息/Info

Title:
Design and simulation of photovoltaic hydrogen production converter based on dual-loop control
文章编号:
1000-0682(2024)02-0130-06
作者:
白 蕾13苑易伟2*胡 平13杨宝兰1
(1.陕西工业职业技术学院电气工程学院, 陕西 咸阳 712000;2.西安理工大学自动化与信息工程学院, 陕西 西安 710048;3.陕西高校青年创新团队, 陕西 咸阳 712000)
Author(s):
BAI Lei13YUAN Yiwei2*HU Ping13YANG Baolan1
(1.Department of Electrical Engineering, Shaanxi Polytechnic Institute, Shaanxi, Xianyang, 712000, China;2. Faculty of Automation and Information Engineering, Xi’an University of Technology, Shaanxi, Xi’an, 710048, China;3.The Youth Innovation Team of Shaanxi Universities, Shaanxi, Xianyang, 712000, China)
关键词:
制氢光伏变流器双环控制
Keywords:
hydrogen productionphotovoltaicconverterdual loop control
分类号:
TK91
DOI:
DOI:10.19950/j.cnki.CN61-1121/TH.2024.02.023
文献标志码:
A
摘要:
变流器是实现光伏发电适用于制氢系统的重要器件,因此,研究变流器相关技术具有十分重要的使用价值和理论意义。该文研究了光伏制氢变流器及双环控制方法。首先,根据光伏制氢系统要求分别计算Boost电路和Buck-Boost电路的元件参数。然后,设计了光伏发电模块的控制回路,通过控制Boost电路中IGBT的导通和关断来升高光伏阵列的输出电压,使其能够达到最大功率点。设计基于电流环和电压环相结合的双环控制策略,控制电路中开关的导通和关断,保证系统输出电压和功率的稳定。储能模块的控制回路通过控制Buck-Boost电路中IGBT的导通和关断,实现蓄电池的充电和放电使得母线电压保持稳定。蓄电池的控制回路采用双环控制,使得光伏制氢系统的控制精度更高。完成设计后搭建光伏制氢系统仿真模型,观察系统在不同情况下的输出波形,验证设计的可行性。
Abstract:
Converters are important devices for achieving photovoltaic power generation suitable for hydrogen production systems. Therefore, studying converter related technologies has significant practical value and theoretical significance. This article studies the photovoltaic hydrogen production converter and the dual loop control method. Firstly, calculate the component parameters of the Boost circuit and the Buck Boost circuit according to the requirements of the photovoltaic hydrogen production system. Then, the control circuit of the photovoltaic power generation module was designed to increase the output voltage of the photovoltaic array by controlling the on and off of the IGBT in the Boost circuit, enabling it to reach the maximum power point. Design a dual loop control strategy based on the combination of current loop and voltage loop to control the conduction and shutdown of switches in the circuit, ensuring the stability of system output voltage and power. The control circuit of the energy storage module controls the on and off of the IGBT in the Buck Boost circuit to charge and discharge the battery and maintain stable bus voltage. The control circuit of the battery adopts dual loop control, which makes the control accuracy of the photovoltaic hydrogen production system higher. After completing the design, build a simulation model of the photovoltaic hydrogen production system, observe the output waveform of the system under different conditions, and verify the feasibility of the design.

参考文献/References:

[1]詹阔.“双碳”背景下我国氢能产业发展现状综述[J].铁路采购与物流,2023,18(07):37-39.

[2]Sabrina Fernandes Macedo, Drielli Peyerl, Prospects and economic feasibility analysis of wind and solar photovoltaic hybrid systems for hydrogen production and storage: A case study of the Brazilian electric power sector[J]. International Journal of Hydrogen Energy, 2022, 47(19):10460-10473.
[3]刘普,崔艺博,刘兆峰,等.基于阻抗分析法的并网变流器稳定性统一分析方法研究[J].电力系统保护与控制, 2023, 51(4):114-125.
[4]韩睿康.可再生能源制氢技术与应用[J].节能,2023,42(06):94-96.[5]唐欣,李珍,李勇,等.并网变流器频率耦合振荡分析及解耦控制设计[J].中国电机工程学报,2023,43(08):3127-3137.
[6]曲建鑫,李振新,孙佳,等.可再生能源耦合氢储能隔离型变换器设计[J].吉林电力,2022,50(06):
[7] 李仁贵,荣军,刘凯,等. Boost变换器在单相功率因数校正技术中的应用[J]. 船电技术,2015,35(08):32-35.
[8] 苏锐. DC电源直流斩波电路设计[J]. 通信电源技术,2019,36(02):136-137.
[9] 胡舒阳. 直流微网中双向DC/DC变换器的研究[D]. 扬州:扬州大学,2013.
[10] 时颖,杭阿芳,田行璇,等.直流微电网双向Buck-Boost变换器控制模型的研究[J].现代制造技术与装备,2022,58(06):14-17.
[11]聂进新,赵志斌,于守淼,等.基于PLECS仿真的四开关Buck-Boost变换器参数设计[J].电子设计工程,2023,31(16):62-66.

相似文献/References:

[1]夏德印,张 赛,张公全,等.光伏发电系统功率最大化方法研究与实现[J].工业仪表与自动化装置,2015,(03):48.
 XIA Deyin,ZHANG Sai,ZHANG Gongquan,et al.Study and Realization of Maximizing the Power of Photovoltaic System[J].Industrial Instrumentation & Automation,2015,(02):48.
[2]程丽娟,徐立军,胡 兵,等.并网型风电盐水制氢系统的控制[J].工业仪表与自动化装置,2020,(03):29.[doi:1000-0682(2020)03-0000-00]
 CHENG Lijuan,XU Lijun,HU Bing,et al.Control of grid-connected wind power brine hydrogen production system[J].Industrial Instrumentation & Automation,2020,(02):29.[doi:1000-0682(2020)03-0000-00]
[3]张顺星,苑易伟,胡 平,等.光伏-PEM直接耦合电解水制氢系统研究[J].工业仪表与自动化装置,2022,(03):49.[doi:10.19950/j.cnki.cn61-1121/th.2022.03.011]
 ZHANG Shunxing,YUAN Yiwei,HU Ping,et al.Research on photovoltaic -PEM electrolytic water hydrogen direct coupling system[J].Industrial Instrumentation & Automation,2022,(02):49.[doi:10.19950/j.cnki.cn61-1121/th.2022.03.011]

备注/Memo

备注/Memo:
收稿日期:2023-11-19基金项目:陕西省博士后基金(项目编号:2023BSHYDZZ140);陕西工业职业技术学院自然科学类重点项目(项目编号:2022YKZD-002);陕西省自然科学基础研究计划面上项目(项目编号:2022JM-388);陕西工业职业技术学院科技创新专项(项目编号:2022YKZX-021)。第一作者:白蕾(1988—),女,陕西咸阳人,硕士,副教授,研究方向为新能源技术、电气自动化。
更新日期/Last Update: 1900-01-01