|本期目录/Table of Contents|

[1]冯志强,李 磊,魏铭毅.基于改进蛇优化算法的轮式机器人路径规划[J].工业仪表与自动化装置,2024,(03):72-76.[doi:DOI:10.19950/j.cnki.CN61-1121/TH.2024.03.013]
 FENG Zhiqiang,LI Lei,WEI Mingyi.Wheeled robot path planning based on improved snake optimizer[J].Industrial Instrumentation & Automation,2024,(03):72-76.[doi:DOI:10.19950/j.cnki.CN61-1121/TH.2024.03.013]
点击复制

基于改进蛇优化算法的轮式机器人路径规划(PDF)

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2024年03期
页码:
72-76
栏目:
出版日期:
2024-06-15

文章信息/Info

Title:
Wheeled robot path planning based on improved snake optimizer
文章编号:
1000-0682(2024)03-0072-05
作者:
冯志强李 磊魏铭毅
(国电电力双维内蒙古上海庙能源有限公司,内蒙古 鄂尔多斯 016200)
Author(s):
FENG Zhiqiang LI Lei WEI Mingyi
(Guodian Electric Shuangwei Inner Mongolia Shanghai Temple Energy Co., Ltd., Inner Mongolia Ordos 016200, China)
关键词:
蛇优化算法正弦混沌映射双向搜索精英对立学习轮式机器人路径规划
Keywords:
snake optimizer sine chaotic mapping bidirectional search elite opposition-based learning wheeled robot path planning
分类号:
TP242TP18
DOI:
DOI:10.19950/j.cnki.CN61-1121/TH.2024.03.013
文献标志码:
A
摘要:
为解决轮式机器人路径规划中效率低、寻优速度慢等问题,提出一种改进的蛇优化算法(improved snake optimizer, ISO)。在初始阶段引入正弦混沌映射扩大算法寻优空间,提升解的质量。同时设计了一种双向搜索策略,在最佳和最差个体引导的两个方向上逼近全局最优值,使收敛速度更快。并在算法中增加改进的进化种群动力机制,替换质量较差的个体从而提高种群质量。另外利用精英对立学习策略来提高算法的局部开发性能。仿真结果表明,ISO算法在轮式机器人路径规划过程中,相比其它对比算法各项指标更优,寻优效率更高,可以有效帮助轮式机器人完成规划任务。
Abstract:
To solve the issues of inadequate productivity and sluggish optimization velocity in wheeled robot path planning, an improved snake optimizer (ISO) was proposed. In the initial stage, sine chaotic mapping expansion algorithm is introduced to optimize the space and improve the quality of the solution. A bidirectional search strategy is devised to approximate the global optimal value simultaneously in the two directions led by the best and the worst individual, which makes the convergence speed faster. The improved evolutionary population dynamic mechanism is added to the algorithm to replace the poor quality individuals so as to improve the population quality. In addition, utilizing the elite opposition-based learning strategy is used to improve the local development ability of the algorithm. The simulation results show that the ISO algorithm performs better in various indicators and has higher optimization efficiency compared to other comparative algorithms in wheeled robot path planning process and can effectively help the wheeled robot to complete the planning task.

参考文献/References:

[1]HUANG J Y, WU H H. Mobile Robot Path Planning Based on Improved Coyote Optimization Algorithm[J], Mathematical Problems in Engineering, 2022(02):54-68.

[2]董林威,高宏力,潘江.基于改进粒子群算法的路径规划研究与应用[J].机械制造与自动化,2023,52(06):81-84.
[3]郭茜,袁德成.基于改进RRT*算法的可重构机器人路径规划[J].工业仪表与自动化装置,2023(03):70-74.
[4]POUDEL S, ARAFAT M Y, MOH S. Bio-Inspired Optimization-Based Path Planning Algorithms in Unmanned Aerial Vehicles: A Survey[J]. Sensors,2023,23(6):3051-3063.
[5]YAN X, ZHOU X, LUO Q. A Safe Heuristic Path-Planning Method Based on a Search Strategy[J]. Sensors,2023,24(1):55-67.
[6]邱朋,汪光,赵理,等.采用改进人工势场法的动态无人车路径规划[J].机械设计与制造,2023(03):291-296.
[7]郭烈,齐国栋,赵一兵,等.融合A*与TEB算法的机器人多任务导航调度研究[J].华中科技大学学报(自然科学版),2023,51(02):82-88.
[8]程满,杨光永,徐天奇,等.基于RRT改进算法的AGV路径规划[J].计算机与数字工程,2023,51(03):606-611.
[9]甘鹏,方博,李博,等.基于改进RRT的输电线路无人机自动巡检方法[J].电子设计工程,2022,30(21):39-42.
[10]蔡泽,胡耀光,闻敬谦,等.复杂动态环境下基于深度强化学习的AGV避障方法[J].计算机集成制造系统,2023,29(01):236-245.
[11]赵迪,何克勤,赵祖高.基于改进粒子群优化算法的移动机器人路径规划[J].传感器与微系统,2023,42(06):150-153.
[12]许伦辉,曾豫豪.基于改进ACO和三次B样条曲线的路径规划[J].计算机仿真,2022,39(07):407-411.
[13]苗振腾,王威,王俊鹏.基于神经网络改进的HHO算法AGV路径规划[J].组合机床与自动化加工技术,2022(09):20-23+28.
[14]ZHANG Q, NING X, LI Y Y, et al. Path planning of patrol robot based on modified grey wolf optimizer[J].Robotica,2023,41(7):1947-1975.HASHIM F A, Hussien A G. Snake Optimizer: A novel meta-heuristic optimization algorithm[J]. Knowledge-Based Systems, 2022,242:108320-108354

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2024-01-31基金项目:陕西省重点研发计划(2020ZDLGR07-06)第一作者:冯志强(1979—),男,工程师,主要研究方向为机器人技术,E-mail:zhi64136@163.com
更新日期/Last Update: 1900-01-01