|本期目录/Table of Contents|

[1]王荣鑫,葛振福,侯晨晨,等.基于LightGBM的集中供热系统预测控制策略研究[J].工业仪表与自动化装置,2024,(03):38-41+46.[doi:DOI:10.19950/j.cnki.CN61-1121/TH.2024.03.007]
 WANG Rongxin,GE Zhenfu,HOU Chenchen,et al.Research on predictive control strategy for central heating system based on LightGBM[J].Industrial Instrumentation & Automation,2024,(03):38-41+46.[doi:DOI:10.19950/j.cnki.CN61-1121/TH.2024.03.007]
点击复制

基于LightGBM的集中供热系统预测控制策略研究(PDF)

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2024年03期
页码:
38-41+46
栏目:
出版日期:
2024-06-15

文章信息/Info

Title:
Research on predictive control strategy for central heating system based on LightGBM
文章编号:
1000-0682(2024)03-0038-04
作者:
王荣鑫1葛振福1侯晨晨 2王越洋 2
(1.淄博市热力集团有限责任公司;2.淄博热力有限公司,山东 淄博 255000)
Author(s):
WANG Rongxin 1 GE Zhenfu 1 HOU Chenchen2 WANG Yueyang2
(1. Zibo Heating Group Co., Ltd,;2. Zibo Heating Co., Ltd, Shandong Zibo 255000,China)
关键词:
集中供热系统LightGBM负荷预测移动加权平均预测控制
Keywords:
central heating system LightGBM load forecasting moving weighted average algorithm predictive control
分类号:
TP 273
DOI:
DOI:10.19950/j.cnki.CN61-1121/TH.2024.03.007
文献标志码:
A
摘要:
针对城市集中供热系统大时滞非线性、换热站负荷预测与调控过度依赖人工经验、系统预测及调控过程不精细、不及时以及系统能耗偏高等现状,提出了一种基于轻梯度提升机(Light Gradient Boosting Machine,LightGBM)的集中供热系统预测控制策略。首先,结合供热系统气候补偿工艺原理,建立了基于LightGBM换热站回水温度预测模型,用以确保回水温度预测目标的及时性与可靠性;其次,设计了基于移动加权平均算法的预测函数,结合PID控制算法实现了集中供热系统的精准负荷预测与高性能调控。实践结果表明,所提出的基于LightGBM的集中供热系统预测控制策略,可及时精准地预测换热站运行负荷且具有更好的超前控制效果,有效地提高了集中供热控制系统的可靠稳定性能。
Abstract:
A predictive control strategy for centralized heating systems based on Light Gradient Boosting Machine (LightGBM) is proposed to address the current situation of large time delay nonlinearity in urban centralized heating systems, excessive reliance on manual experience in load prediction and regulation of heat exchange stations, imprecise and untimely system prediction and regulation processes, and high system energy consumption. Firstly, based on the principle of climate compensation technology in heating systems, a LightGBM heat exchange station return water temperature prediction model was established to ensure the timeliness and reliability of the return water temperature prediction target. Secondly, a prediction function based on the moving weighted average algorithm was designed, and combined with the PID control algorithm, precise load prediction and high-performance regulation of the centralized heating system were achieved. The practical results show that the proposed LightGBM based predictive control strategy for central heating systems can accurately predict the operating load of heat exchange stations in a timely manner and has better advanced control effects, effectively improving the reliability and stability performance of the central heating control system.

参考文献/References:

[1] 张亚东.智慧供热系统运行实践[J].区域供热,2023(06):47-53.?div>[2] 方修睦,杨大易,周志刚.智慧供热系统数据运行核查方法研究[J].暖通空调,2024,54(01):69-74+139.

[3] 孙鹏.城市集中供热系统热负荷预测与二次网节能控制方法[J].区域供热,2023(06):54-60.
[4] 王雅然,宋子旭,由世俊,等.集成奇异谱分析与神经网络的热负荷预测算法[J].天津大学学报(自然科学与工程技术版),2023,56(06):573-578.
[5] 赵广昊,薛贵军,张亦睿.变论域Smith-Fuzzy-PID在集中供热系统二网控制中的应用[J].华北理工大学学报(自然科学版),2023,45(04):50-57.?/div>
[6] 马可心,刘剑,刘伟,等.模糊理论结合PID控制方法在集中供热系统中的应用[J].热科学与技,2021,20(06):601-606.
[7] 刘春蕾,蔡阳,丁一博,等.串级模糊自适应PID控制的分时分区温控系统[J].区域供热,2023(05):99-105+111.
[8] 薄盛,王海超,赵洁,等.集中供热系统供暖建筑室温控制算法研究综述[J].煤气与热力,2023,43(03):9-17.
[9] 汪明元,王振红,陈松庭.基于LightGBM算法的海洋土压缩参数预测模型[J].浙江工业大学学报,2024,52(01):17-24.
[10] 马良玉,袁乃正.基于CFSFDP与LightGBM的风电机组异常状态预警研究[J].太阳能学报,2023,44(05):401-406.

相似文献/References:

[1]韩 建,刘 梦,曹志民,等.一种基于多模型融合的测井曲线复原方法[J].工业仪表与自动化装置,2021,(06):106.[doi:10.19950/j.cnki.cn61-1121/th.2021.06.021]
 HAN Jian,LIU Meng,CAO Zhimin,et al.Multi-model fusion-based approach of well logging curve restoration[J].Industrial Instrumentation & Automation,2021,(03):106.[doi:10.19950/j.cnki.cn61-1121/th.2021.06.021]

备注/Memo

备注/Memo:
收稿日期:2024-02-19第一作者:王荣鑫(1975—),男,山东淄博人,本科,高级工程师,研究方向为智慧供热系统研发,智能传感器应用等。通信作者:葛振福(1989—),男,山东淄博,硕士,工程师,研究方向为供热系统自动化控制,智慧供热系统研发等。
更新日期/Last Update: 1900-01-01