|本期目录/Table of Contents|

[1]王江荣,文 晖,黄建华.基于差分进化算法的二次回归在矿井通风机故障诊断中的应用[J].工业仪表与自动化装置,2015,(01):50-53.
 WANG Jiangrong,WEN Hui,HUANG Jianhua.The two regression in ventilator fault diagnosis application based on difference evolutionary algorithm[J].Industrial Instrumentation & Automation,2015,(01):50-53.
点击复制

基于差分进化算法的二次回归在矿井通风机故障诊断中的应用(PDF)

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2015年01期
页码:
50-53
栏目:
出版日期:
2015-02-15

文章信息/Info

Title:
The two regression in ventilator fault diagnosis application based on difference evolutionary algorithm
文章编号:
20140110
作者:
王江荣文 晖黄建华
(兰州石化职业技术学院 信息处理与控制工程系,兰州730060)
Author(s):
WANG Jiangrong WEN Hui HUANG Jianhua
(Information Processing and Control Eengineering, Lanzhou Petrochemical College of Vocational Technology, Lanzhou 730060,China)
关键词:
矿井通风机故障诊断二次回归方程差分进化算法分类识别
Keywords:
mine ventilation machine fault diagnosis two regression equations differential evolution algorithm classification
分类号:
O235
DOI:
-
文献标志码:
A
摘要:
针对矿井通风机故障诊断过程中样本数据有限的特点,提出了一种经差分进化算法优化的二次回归诊断方法。将样本数据分为建模数据和测试数据,测试结果表明该方法具有适用性强、操作简单、精准度高,且无需太多样本数据等特点,值得推广。
Abstract:
according to the characteristics of the sample ventilator fault diagnosis process data is limited, put forward the differential evolution algorithm to optimize two regression diagnosis method. The sample data into the modeling data and test data, test results show that the method has strong applicability, simple operation, high accuracy, and does not need too many features such as sample data, worthy of promotion.

参考文献/References:

[1] 石瑶,任清阳.基于支持向量机的矿井通风机故障诊断系统的研究[J].自动化与仪器仪表,2013(5):18-20.[2] 刘朴,付胜.嵌入式矿井通风机在线监测与故障诊断系统设计[J].工矿自动化,2013,39(12):103-106.[3] 李扬,姚锦秀,汪仁煌.关联维计算及其在旋转机组振动故障征兆提取中的应用[J].机电工程技术,2002,31(6):51-53.[4] 汪光阳,周义莲.风机振动故障诊断综述[J].安徽工业大学学报,2006,23(1):64-68.[5] 刘金琨,沈晓蓉.系统辨识理论及MATLAB仿真[M].北京:电子工业出版社,2013:240-242.[6] 杨淑莹,张桦.群体智能与仿生计算 MATLAB技术实现[M].北京:电子工业出版社,2012:56-58.[7] 周润景,张丽娜.基于MATLAB与fuzzyTECH的模糊与神经网络设计[M].北京:电子工业出版社,2010:178-179.

相似文献/References:

[1]尹新权,王 珺,张亚萍.基于模糊理论的柴油机故障诊断专家系统[J].工业仪表与自动化装置,2015,(01):111.
 YIN Xinquan,WANG Jun,ZHANG Yaping.Fault diagnostic expert system of diesel engine based on fuzzy theory[J].Industrial Instrumentation & Automation,2015,(01):111.
[2]孟文俊a,徐光华a,b,等.基于LabVIEW的滚动轴承非平稳过程监测诊断及性能评估系统的开发[J].工业仪表与自动化装置,2015,(02):18.
 MENG Wenjuna,XU Guanghuaa,b,et al.Development of non-stationary process for rolling bearing fault diagnosis and performance evaluation system based on LabVIEW[J].Industrial Instrumentation & Automation,2015,(01):18.
[3]李 茜,王延年.基于普通铣床数控化的S7-300 PLC远程监控和故障诊断系统设计[J].工业仪表与自动化装置,2015,(02):49.
 LI Qian,WANG Yannian.Design of remote monitoring and fault diagnosis systembased on the ordinary milling machine of numerical control of S7-300 PLC[J].Industrial Instrumentation & Automation,2015,(01):49.
[4]巴寅亮,王书提,谢 鑫.基于改进的BP神经网络的柴油发动机故障诊断[J].工业仪表与自动化装置,2015,(03):94.
 BA Yinliang,WANG Shuti,XIE Xin.Research of diesel engine fault based on improved BP neural network[J].Industrial Instrumentation & Automation,2015,(01):94.
[5]张卫峰,惠俊军.智能故障诊断技术的现状及展望[J].工业仪表与自动化装置,2017,(05):21.
 ZHANG Weifeng,HUI Junjun.The present situation and prospects of intelligence fault diagnosis technology[J].Industrial Instrumentation & Automation,2017,(01):21.
[6]宫玮丽,梁 波,王晓兰.基于小波包和Hilbert包络分析的隧道掘进机主轴承故障诊断方法研究[J].工业仪表与自动化装置,2018,(02):15.[doi:1000-0682(2018)02-0000-00]
 GONG Weili,LIANG Bo,WANG Xiaolan.Research on fault diagnosis method of main bearing of tunnel boring machine based on wavelet packet and Hilbert envelope analysis[J].Industrial Instrumentation & Automation,2018,(01):15.[doi:1000-0682(2018)02-0000-00]
[7]席 维,白 璘,武奇生.基于经验小波变换和峭度值的滚动轴承故障检测方法[J].工业仪表与自动化装置,2018,(06):26.[doi:1000-0682(2018)06-0000-00]
 XI Wei,BAI Lin,WU Qisheng.A novel rolling bearing fault detection method based on empirical wavelet transform and kurtosis value[J].Industrial Instrumentation & Automation,2018,(01):26.[doi:1000-0682(2018)06-0000-00]
[8]张远绪,程换新.基于改进的RBF神经网络的滚动轴承故障诊断[J].工业仪表与自动化装置,2018,(06):31.[doi:1000-0682(2018)06-0000-00]
 ZHANG Yuanxu,CHENG Huanxin.Fault diagnosis of rolling bearing based on improved RBF neural network[J].Industrial Instrumentation & Automation,2018,(01):31.[doi:1000-0682(2018)06-0000-00]
[9]郭兰中,彭刘阳,窦 岩,等.基于小波包-AR谱和GA-BP网络的轴承故障诊断研究[J].工业仪表与自动化装置,2019,(03):3.[doi:1000-0682(2019)03-0000-00]
 GUO Lanzhong,PENG Liuyang,DOU Yan,et al.Research on bearing fault diagnosis based on wavelet packet –auto regressive model spectrum and GA-BP neural network[J].Industrial Instrumentation & Automation,2019,(01):3.[doi:1000-0682(2019)03-0000-00]
[10]肖亚苏,张令品,俞永江,等.海水淡化远程互动故障诊断平台的设计与实现[J].工业仪表与自动化装置,2019,(05):33.[doi:1000-0682(2019)05-0000-00]
 XIAO Yasu,ZHANG Lingpin,YU Yongjiang,et al.Design and realize of remote interactive fault diagnosis platform for seawater desalination[J].Industrial Instrumentation & Automation,2019,(01):33.[doi:1000-0682(2019)05-0000-00]

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2015-02-15