|本期目录/Table of Contents|

[1]李战明,张晓东.小波分析中4种去噪方法的分析比较[J].工业仪表与自动化装置,2015,(02):12-17.
 LI Zhanming,ZHANG Xiaodong.The comparison of four kinds of methods of denoising based on wavelet analysis[J].Industrial Instrumentation & Automation,2015,(02):12-17.
点击复制

小波分析中4种去噪方法的分析比较(PDF)

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2015年02期
页码:
12-17
栏目:
出版日期:
2015-04-15

文章信息/Info

Title:
The comparison of four kinds of methods of denoising based on wavelet analysis
文章编号:
1000-0682(2015)02-0000-02
作者:
李战明张晓东
(兰州理工大学 电气工程与信息工程学院,兰州 730050)
Author(s):
LI ZhanmingZHANG Xiaodong
(1,College of Electrical Engineering and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China)
关键词:
小波分析心电信号肌电干扰阈值函数
Keywords:
wavelet analysis ECG signals EMG interference threshold function
分类号:
TP391;R540.4+1
DOI:
-
文献标志码:
A
摘要:
分析了基于小波分析的4种不同的去噪方法,并在其中寻找最适宜在实际中应用的心电信号中肌电干扰的去除方法。4种去噪方法分别采用软、硬及改进等3种阈值函数,通过MATLAB对MIT-BIH数据库中所提供的的心电信号进行实验分析,根据去噪效果及所需时间对比结果判断最适宜的去噪方法。离散小波变换阈值法在采用3种阈值函数时去噪效果均较差,平移不变量小波阈值法本身运算量过大,平稳小波变换阈值法与提升小波变换阈值法在采用改进阈值函数时去噪效果好且所需时间相对较少。采用改进阈值函数的平稳小波变换阈值法与采用改进阈值函数的提升小波变换阈值法为4种方法中最适宜在心电信号肌电干扰去除中应用的方法。
Abstract:
Four different kinds of denoising methods based on wavelet analysis were analysed in this paper, and in order to look for the most suitable methods among them to remove the EMG interference from ECG signals in the practical application. These methods adopted the soft,the hard and the improved threshold functions respectively.Use MATLAB to do experiments with the ECG signals provided by the MIT-BIH database,and select the most suitable methods according to the comparison results of the denoising effects and the time needed. The discrete wavelet transform threshold method gets a poor denoising effect when using the three kinds of threshold functions,the translation invariant wavelet threshold method needs much computation time itself,and the stationary wavelet transform threshold method and the lifting wavelet transform threshold method get a good denoising effect and need a little time relatively when using the improved threshold function. The stationary wavelet transform threshold method combined with the improved threshold function and the lifting wavelet transform threshold method combined with the improved threshold function are the most suitable methods to remove the EMG interference among the four kinds of methods.

参考文献/References:

[1] 张径周,寿国法,戴冠中.基于小波变换的心电信号噪声处理[J].西北工业大学学报,2005,23(1):11-14.

[2] 赵晴,赵捷,魏珑.基于小波变换的心电信号去噪算法[J].现代生物医学进展,2007,7(10):1566-1568.
[3] 翁羽洁,丁勇,孙立艳,等.一种基于提升小波和中值滤波的心电去噪方法[J].北京生物医学工程,2010,29(5): 465-469.
[4] C.Saritha,V.Sukanya,Y.Narasimha Murthy.ECG Signal Analysis Using Wavelet Transforms[J].Department of Physics and Electronics,S.S.B.N.COLLEGE(Autonomous), 2008(35):68-77.
[5] A.D.Jeyarani,T.Jaya Singh.Analysis of Noise Reduction Techniques on QRS ECG Waveform-by Applying Different Filters[J].IEEE Recent Advances in Space Technology Services and Climate Change (RSTSCC), 2010(10): 149-152.
[6] 李媛.小波变换及其工程应用[M].北京:北京邮电大学出版社,2010:26-27.
[7] 杨建国.小波分析及其工程应用[M].北京:机械工业出版社,2005: 26-27.
[8] 李肃义.可穿戴生理参数监测系统的动态心电信号处理方法研究[D].吉林大学,2009.
[9] 孙延奎.小波分析及其应用[M].北京:机械工业出版社, 2005: 28-30.
[10] 周伟.MATLAB小波分析高级技术[M].西安:西安电子科技大学出版社,2005:105-106.
[11] WEIQIANG ZHANG, GUOXIANG SONG. A TRANSLATION-INVARIANT WAVELET DE-NOISING METHOD BASED ON A NEW THRESHOLDING FUNCTION[J].IEEE Proceedings of the Second International Conference on Machine Learning and Cybernetics[J]. 2003,11:2341-2345.
[12] Guosheng ZHONG,Yingxiang DENG,Liping AO. Study and application of translation invariant wavelet de- noising for blasting seismic signals[J]. IEEE Multimedia Technology (ICMT), 2011,11:4100-4103.
─5b13] Baby Paul, P. Mythili. ECG Noise Removal using GA tuned Sign-Data Least Mean Square Algorithm[J]. IEEE International Conference on Advanced Communication Control and Computing Technologies (ICACCCT), 2012,12:100-103.
[14] 张维强,宋国乡.基于一种新的闽值函数的小波域信号去噪[J].西安电子科技人学学:自然科学版,2004,31(2): 296-299.
[15] 张德丰.MATLAB小波分析[M].北京:机械工业出版社,2009:206-207.
[16] 翁羽洁,丁勇,孙立艳,等.一种基于提升小波和中值滤波的心电去噪方法[J].北京生物医学工程,2010,29(5): 465-469.

相似文献/References:

[1]文 晖.基于小波分析的GM(1,1)模型在瓦斯浓度预测分析中的应用[J].工业仪表与自动化装置,2015,(06):63.
 WEN Hui.Application of GM(1,1) model based on wavelet analysis in gas concentration Prediction Analysis[J].Industrial Instrumentation & Automation,2015,(02):63.
[2]韩芝星,蔡晓龙.基于小波变换的提升机闸瓦间隙故障信号诊断[J].工业仪表与自动化装置,2021,(03):115.[doi:10.19950/j.cnki.cn61-1121/th.2021.03.024]
 HAN Zhixing,CAI Xiaolong.Hoist brake shoe signal gap fault diagnosis based on wavelet[J].Industrial Instrumentation & Automation,2021,(02):115.[doi:10.19950/j.cnki.cn61-1121/th.2021.03.024]
[3]刘尔晨,刘天涯.基于小波神经网络的机器人模糊控制算法[J].工业仪表与自动化装置,2023,(04):84.[doi:10.19950/j.cnki.cn61-1121/th.2023.04.015]
 LIU Erchen,LIU Tianya.Robot fuzzy control algorithm based on wavelet neural network[J].Industrial Instrumentation & Automation,2023,(02):84.[doi:10.19950/j.cnki.cn61-1121/th.2023.04.015]

备注/Memo

备注/Memo:

收稿日期 2014-07-11

基金项目 :教育部博士点基金 (20106201110003)

作者简介 :李战明( 1962 ),男,陕西西安人,教授,博士生导师,主要从事智能信息处理,神经网络,嵌入式系统应用等方面的研究工作。 ─3c/span>

更新日期/Last Update: 1900-01-01