|本期目录/Table of Contents|

[1]李春华,徐少雄.基于PSO的RBF神经网络的变频调速系统的研究[J].工业仪表与自动化装置,2015,(03):3-5.
 LI Chuanhua XU Shaoxiong.The research of variable frequency speed control system based on PSO-RBFneural network[J].Industrial Instrumentation & Automation,2015,(03):3-5.
点击复制

基于PSO的RBF神经网络的变频调速系统的研究(PDF)

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2015年03期
页码:
3-5
栏目:
出版日期:
2015-06-15

文章信息/Info

Title:
The research of variable frequency speed control system based on PSO-RBFneural network
文章编号:
1000-0682(2015)03-0000-00
作者:
李春华徐少雄
(黑龙江科技大学,哈尔滨150022)
Author(s):
LI Chuanhua XU Shaoxiong
(Heilongjiang University of Science and Technology, Harbin 150022, China)
关键词:
粒子群BP神经网络变频调速系统
Keywords:
particle swarmBP neural networkvariable frequency speed control system
分类号:
TP23
DOI:
-
文献标志码:
A
摘要:
采用粒子群和RBF神经网络算法相结合的方法构造PSO-RBF神经网络PID控制器,利用S函数编写了MATLAB的PSO-RBF神经网络PID的M文件,并在SIMULINK环境下建立了基于PSO-BF神经网络PID的变频调速系统。仿真结果充分表明了该控制器具有良好的鲁棒性、跟随性和稳定性,而且改善了原系统的动态特性,证明了该方法在变频调速系统中的应用价值。
Abstract:
This paper adopt particle swarm algorithm and RBF neural network to construct the PID controller of PSO-RBFneural network , the M-Files of PSO-RBFneural network PID based on MATLAB through S-Function, and the mode of PSO-RBFneural network PID variable frequency speed control system was established in SIMULINK platform.Simulation results show that the controller hold well robustness, follow and stability,and the dynamic characteristics of the original system was improved, the application value of this method in the variable frequency speed control system was proved.

参考文献/References:

[1] 郭兴众,张春,陈其工.基于ANFIS控制的交流变频调速系统研究[J].电子科技大学学报,2006(04):
[2] 姜毅,郭丙君.基于神经网络PID控制器在交流调速系统中的应用[J].华东理工大学学报,2012(12):
[3] 纪阳.基于PSO算法的RBF神经网络在板形板厚综合控制中的应用[D].东华大学,2013(01):
[4] 洪乃刚.电力电子电机控制系统仿真技术[M].北京:机械工业出版社,2013.

相似文献/References:

[1]刘 千,王 堃.基于BP神经网络的防空目标识别方法[J].工业仪表与自动化装置,2015,(02):94.
 LIU Qian,WANG Kun.The research of the air defense target recognition based on BP neural network[J].Industrial Instrumentation & Automation,2015,(03):94.
[2]巴寅亮,王书提,谢 鑫.基于改进的BP神经网络的柴油发动机故障诊断[J].工业仪表与自动化装置,2015,(03):94.
 BA Yinliang,WANG Shuti,XIE Xin.Research of diesel engine fault based on improved BP neural network[J].Industrial Instrumentation & Automation,2015,(03):94.
[3]李珊珊,李一民,郭真真.基于神经网络的分阶车牌字符识别算法研究[J].工业仪表与自动化装置,2016,(02):7.
 LI Shanshan,LI Yimin,GUO Zhenzhen.Research on a phased license plate character recognition algorithm based on neural network[J].Industrial Instrumentation & Automation,2016,(03):7.
[4]汤会增,韩 湘,毛建坤,等.基于BP网络的GIS局部放电声电联合检测故障定位方法[J].工业仪表与自动化装置,2016,(04):57.
 TANG Huizeng,HAN Xiang,MAO Jiankun,et al.The fault location method of acoustic electric joint partial discharge detection based on BP network in GIS[J].Industrial Instrumentation & Automation,2016,(03):57.
[5]王 权,李 军,戴 立.基于BP神经网络的电动伺服加载算法研究[J].工业仪表与自动化装置,2017,(02):8.
 WANG Quan,LI Jun,DAI Li.Research on electric loading simulator algorithms based on BP neural network[J].Industrial Instrumentation & Automation,2017,(03):8.
[6]梁书立,冯渭春.空间机械手末端位姿修正模型构建方法[J].工业仪表与自动化装置,2017,(03):3.
 LIANG Shuli,FENG Weichun.Method of building correction model of end position and posture on space manipulator[J].Industrial Instrumentation & Automation,2017,(03):3.
[7]王江荣,白保琦.基于GA-BP算法的混凝土抗压强度指标筛选[J].工业仪表与自动化装置,2017,(06):10.[doi:1000-0682(2017)06-0010-05]
 WANG Jiangrong,BAI Baoqi.Selection of concrete compressive strength index based on GA-BP algorithm[J].Industrial Instrumentation & Automation,2017,(03):10.[doi:1000-0682(2017)06-0010-05]
[8]万 磊,唐文政,李岳明.智能水下机器人BP神经网络S面控制[J].工业仪表与自动化装置,2019,(02):13.[doi:1000-0682(2019)02-0000-00]
 WAN Lei,TANG Wenzheng,LI Yueming.BP neural network S plane control for autonomous underwater vehicle[J].Industrial Instrumentation & Automation,2019,(03):13.[doi:1000-0682(2019)02-0000-00]
[9]白建云a,孟新雨b,雷秀军a,等.基于BP神经网络的直接空冷凝汽器出口风温预测[J].工业仪表与自动化装置,2019,(02):63.[doi:1000-0682(2019)02-0000-00]
 BAI Jianyuna,MENG Xinyub,LEI Xiujuna,et al.Prediction of outlet air temperature of direct air condenser based on BP neural network[J].Industrial Instrumentation & Automation,2019,(03):63.[doi:1000-0682(2019)02-0000-00]
[10]高 林,李琪琪.基于交通流数据的交通状态判别算法研究[J].工业仪表与自动化装置,2020,(02):8.
 GAO Lin,LI Qiqi.Research on traffic state discrimination algorithm based on traffic flow data[J].Industrial Instrumentation & Automation,2020,(03):8.

备注/Memo

备注/Memo:
-
更新日期/Last Update: 1900-01-01