|本期目录/Table of Contents|

[1]周小军,谭 薇,张 燎,等.遥感图像常用去噪方法[J].工业仪表与自动化装置,2015,(03):69-72.
 ZHOU Xiaojun,TAN Wei,ZHANG Liao,et al.The Research of Remote Sensing Image Denoising Methods[J].Industrial Instrumentation & Automation,2015,(03):69-72.
点击复制

遥感图像常用去噪方法(PDF)

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2015年03期
页码:
69-72
栏目:
出版日期:
2015-06-15

文章信息/Info

Title:
The Research of Remote Sensing Image Denoising Methods
文章编号:
1000-0682(2015)03-0000-00
作者:
周小军谭 薇张 燎郭玉霞
(甘肃工业职业技术学院 电信学院,甘肃 天水741025)
Author(s):
ZHOU Xiaojun TAN Wei ZHANG Liao GUO Yuxia
(Gansu Polytechnic College, Gansu Tianshui 741025,China)
关键词:
遥感图像去噪小波变换滤波
Keywords:
remote sensing images denoising wavelet transform filter
分类号:
TP212
DOI:
-
文献标志码:
A
摘要:
遥感图像在获取和传输的过程中,受各种噪声影响,使图像的边缘纹理等细节模糊,质量降低。为获得清晰的、高质量的遥感图像必须进行降噪预处理。该文就遥感图像去噪的邻域平均法、中值滤波法、维纳滤波法及小波变换法算法原理进行了研究和比较分析并进行了仿真实验。结果表明:对受不同噪声影响的遥感图像选择不同滤波算法均能取得较好的效果,但在噪声模型未知的情况下,小波去噪效果更佳。
Abstract:
In the acquisition and transmission process of remote sensing images, all kinds of noise made the images edge details fuzzy, this lower images quality. In order to get a clear, high quality remote sensing images, de-noising must be conducted. In this paper, we studied the remote sensing image denoising principle such as Neighborhood Average, Median Filtering, Wiener Filtering and Wavelet Transform Method , and carried out the comparative analysis and the simulation experiment. The results shows that, for the noised remote sensing images select different filtering algorithm can obtain a better result, but when the noise model is unknown, Wavelet Transform Method denoising effect is better.

参考文献/References:

[1] 季惠颖,赵碧云.遥感技术在环境监测中的应用综述[J].环境科学导刊,2008,27,(2);21-24
[2] 周成龙.高分辨率卫星遥感影像地学计算[M].北京:科学出版社,2009.7-21
[3] 汤国安,杨昕,韦玉春.遥感数字图像处理教程[M].北京:科学出版社,2007.35-47
[4] 丰茂森.遥感图像数字处理[M].北京:地质出版社, 1992.68-74
[5] 骆剑承,刘庆生,刘高焕等.资源一号卫星影像预处理方法研究[J].地球信息科学.2000,2;5–7
[6] 赵书河,冯学智,赵锐.中巴资源一号卫星南京幅数据质量与几何纠正评价[J].遥感技术与应用.2000,15(3),17–19
[7] Antoni Buades, Bartomeu Coll. A non-local algorithm for image denoising[C].Technical Report 2004-15, CMLA, 136-141.
[8] Zhou Dengwen,Cheng Wengang, Image denoising with an optimal threshold and neighbouring window[J].Pattern Recognition Letters,2008,29,1694–1697
[9] Yanmin He,Tao Gan,Wufan Chen,and Houjun Wang. Adaptive Denoising by Singular Value Decomposition[J]. IEEE SIGNAL PROCESSING LETTERS, 2011(18): 215-218.
[10] Tanaphol Thaipanich,Byung Tae Oh. Improved Image Denoising with Adaptive Nonlocal Means (ANL-Means) Algorithm[C].The International Conference on Consumer Electronics 2010 (ICCE2010),Las Vegas,NV,USA, 2623-2630
[11] 方莉,张萍.经典图像去噪算法研究综述[J].工业控制计算机,2010,11(23),73-74
[12] Lei Zhang,WeishengDong,and DavidZhang.Two-stage image denoising by principalcomponent analysis with local pixel grouping[J].Pattern Recognition,2010,43,1531–1549
[13] 孙蕾,谷德峰,罗建书.高光谱遥感图像的小波去噪方法[J].光谱学与光谱分析,2009,29(7),1954-1957
[14] J.Jennifer Ranjani,S.J.Thiruvengadam.Generalized SAR Despeckling Based on DTCWT Exploiting Interscale and Intrascale Dependences[J].IEEE Geoscience And Remote Sensing Letters.2011,8(3),552-556
[15] A.Foi,V.Katkovnik,and K.Egiazarian,Pointwise Shape- Adaptive DCT for high-quality denoising and deblocking of grayscale and color images[J].IEEE Trans.Image Process, 2007,16(5) ,1395-1411
[16] 林椹尠,宋国乡,薛文.图像的几种小波去噪方法的比较与改进[J].西安电子科技大学学报,2004,31(4),627-628

相似文献/References:

[1]李战明,张晓东.基于Teager边界谱心音身份识别的特征提取算法[J].工业仪表与自动化装置,2015,(05):3.
 LI Zhanming,ZHANG Xiaodong.Based on Teager boundary spectrum feature extraction of heart sounds identification algorithm[J].Industrial Instrumentation & Automation,2015,(03):3.
[2]代守乐,李耀辉,郭克锋.在线频率分析下的300 MVA脉冲发电机高压变频器自适应调速方法[J].工业仪表与自动化装置,2023,(03):127.[doi:10.19950/j.cnki.cn61-1121/th.2023.03.025]
 DAI Shoule,LI Yaohui,GUO Kefeng.Adaptive speed control method of 300 MVA pulse generator high voltage inverter based on online frequency analysis[J].Industrial Instrumentation & Automation,2023,(03):127.[doi:10.19950/j.cnki.cn61-1121/th.2023.03.025]

备注/Memo

备注/Memo:
-
更新日期/Last Update: 1900-01-01