|本期目录/Table of Contents|

[1]梁雪慧,闫粉粉,邵晓龙.模糊自整定PID在四旋翼飞行器姿态控制中的应用[J].工业仪表与自动化装置,2015,(06):23.
 LIANG Xuehui,YAN Fenfen,SHAOo Xiaolong.An application of a fuzzy self-tuning PID controller in quadrotor attitude control[J].Industrial Instrumentation & Automation,2015,(06):23.
点击复制

模糊自整定PID在四旋翼飞行器姿态控制中的应用(PDF)

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2015年06期
页码:
23
栏目:
出版日期:
2015-12-15

文章信息/Info

Title:
An application of a fuzzy self-tuning PID controller in quadrotor attitude control
文章编号:
1000-0682(2015)06-0000-00
作者:
梁雪慧1闫粉粉1邵晓龙2
(1. 天津理工大学 自动化学院,天津 300384;2. 天津市环境保护科学研究院,天津 300191)
Author(s):
LIANG Xuehui1 YAN Fenfen1 SHAOo Xiaolong2
(1. School of Electrical Engineering, Tianjin University of Technology, Tianjin 300384, China;2. Tianjin Academy of Environmental Sciences, Tianjin 300191, China)
关键词:
四旋翼飞行器PID模糊自整定PID
Keywords:
quadrotor aerocraftPID controlfuzzy self-tuning
分类号:
TP13
DOI:
-
文献标志码:
A
摘要:
四旋翼飞行器在结构简单以及对飞行环境要求低的优势下,使其应用极其广泛。四旋翼飞行器的姿态控制是决定飞行性能的关键,目前,应用较成熟的控制方法仍为PID控制,但是四旋翼飞行器的姿态之间存在非线性的耦合,使得控制参数整定有难度,PID控制器对其姿态的调整会出现较大的超调量,或者较长的调节时间。该文综合了模糊控制和PID控制各自优势,设计了模糊自整定PID控制器,能够实现参数的自整定。仿真结果显示,所设计的控制器能够有效抑制系统超调量、提高响应速度。
Abstract:
Quadrotor aerocraft in the advantages of simple structure and low environmental requirements for flying, make its application widely.The attitude control of a quadrotor aerocraft is the key to guarantee its flight performance. Although the PID control method remains to be used wildly, it tends to appear large system overshoot,or long regulation time because of quadrotor aerocraft’s nonlinearity which enhances the difficulty to adjust the control parameters. As to the nonlinear dynamic model of a quadrotor, a fuzzy self-tuning PID controller is designed. The controller effectively utilizes the advantages of both fuzzy control and PID control, and regulates control parameters in real time. The simulation results show that the controller can effectively suppress the overshoot and cut down the response time.

参考文献/References:

[1] 张浩然.四旋翼直升机控制系统设计与实现[D].哈尔滨:哈尔滨理工大学,2014:1-6.

[2] S Bouabdallah, R Siegwart. Backstepping and Sliding- mode Techniques Applied to an Indoor Micro Quadrotor[C].IEEE Conference on Robotics an Automation, 2005:2247-2252.
[3] 杨明志.四旋翼飞行器自动驾驶仪设计[D].南京:南京航空航天大学, 2008.
[4] 宋述锡.四旋翼无人直升机控制算法研究[D].沈阳:沈阳航空航天大学,2012.
[5] 李成智.飞机百年发展与空气动力学[J].力学与实践, 2003, 25(06): 1-13.
[6] 李小宁.航空大记事[C].南京:第二届中日机械技术史国际学术会议,2000: 304-312.
[7] 聂博文,马宏绪,王剑.微小型四旋翼飞行器的研究现状与关键技术[J].电光与控制,2007,14(6):
[8] 王璐.四旋翼无人飞行器控制技术研究[D].哈尔滨: 哈尔滨工程大学, 2011.
[9] 杨云高,鲜斌,殷强,等.四旋翼无人飞行器架构及飞行控制的研究现状[C].中国自动化学会控制理论专业委员会,中国控制会议第三十届论文集C卷,2011: 448-453.
[10] De Monte, Paul. Trajectory tracking control for a quadrotor helicopter based on back stepping using a decoupling quaternion parametrization[C].2013 21st Mediterranean Conference on Control and Automation, 2013: 507-512.
[11] Rashid, M.Imran. Adaptive control of a quadrotor with unknown model parameters[C].Proceedings of 2012 9th International Bhurban Conference on Applied Sciences and Technology, 2012: 8-14.

相似文献/References:

[1]刘海旗,何军红.基于AVR单片机的红外导航无人船的设计与实现[J].工业仪表与自动化装置,2015,(04):47.
 LIU Haiqi,HE Junhong.Design and implementation of?infrared navigation unmanned?ship based on AVR[J].Industrial Instrumentation & Automation,2015,(06):47.
[2]刘 俊.基于搜寻者优化算法的PID神经网络解耦控制[J].工业仪表与自动化装置,2015,(05):97.
 LIU Jun.PID neural network decoupling control based on seeker optimization algorithm[J].Industrial Instrumentation & Automation,2015,(06):97.
[3]胥 良,郭 林,梁 亚,等.基于模糊RBF神经网络的智能PID控制[J].工业仪表与自动化装置,2015,(06):67.
 XU Liang,GUO Lin,LIANG Ya,et al.Study on intelligent PID control based on fuzzy RBF neural network[J].Industrial Instrumentation & Automation,2015,(06):67.
[4]汝翰霖,李长录,孙铭阳,等.矿用膜分离制氮机温度控制的实现[J].工业仪表与自动化装置,2016,(01):106.
 RU Hanlin,LI Changlu,SUN Mingyang,et al.The realization of temperature control for coal mine film separation and preparation[J].Industrial Instrumentation & Automation,2016,(06):106.
[5]蒲建波,彭晓乐,尹彦东,等.倒立摆控制方法的比较研究[J].工业仪表与自动化装置,2016,(02):11.
 PU Jianbo,PENG Xiaole,YIN Yandong,et al.Comparative study on control method of inverted pendulum[J].Industrial Instrumentation & Automation,2016,(06):11.
[6]江选东.基于西门子PLC的HNx中氢气含量PID级联闭环控制[J].工业仪表与自动化装置,2016,(04):92.
 JIANG Xuandong.The PID cascade closed-loop control of H2 content in HNx based on Siemens PLC[J].Industrial Instrumentation & Automation,2016,(06):92.
[7]孙欢欢,莫岳平,马 瑞,等.基于组态王的水箱液位PID控制设计[J].工业仪表与自动化装置,2016,(04):102.
 SUN Huanhuan,MO Yueping,MA Rui,et al.Design of water tank level PID control based on kingview[J].Industrial Instrumentation & Automation,2016,(06):102.
[8]秦红波.PID控制在卷取温度控制中的应用[J].工业仪表与自动化装置,2016,(06):95.
 QIN Hongbo.Application of PID control to coiling temperature control system[J].Industrial Instrumentation & Automation,2016,(06):95.
[9]胡文权,朱成杰,孔德玉.基于ARM7电网无功补偿的研究[J].工业仪表与自动化装置,2017,(01):115.
 HU Wenquan,ZHU Chengjie,KONG Deyu.A Study of Reactive Power Compensation Based on ARM7[J].Industrial Instrumentation & Automation,2017,(06):115.
[10]李巍巍,张海彪,王光辉,等.基于蚁群算法的倒立摆系统PID控制器设计[J].工业仪表与自动化装置,2018,(03):55.[doi:1000-0682(2018)03-0000-00]
 LI Weiwei,ZHANG Haibiao,WANG Guanghui,et al.Design of inverted pendulum PID controller based on ant colony algorithm[J].Industrial Instrumentation & Automation,2018,(06):55.[doi:1000-0682(2018)03-0000-00]

备注/Memo

备注/Memo:
收稿日期:2015-03-31
基金项目:天津市科技特派员项目 (14JCTPJC00510);天津市科技计划资助项目(13ZCZDGX03800)
作者简介:梁雪慧(1970),女,河北省藁城市人,副教授,主要研究领域为先进控制理论。
更新日期/Last Update: 1900-01-01