|本期目录/Table of Contents|

[1]李伟生,张继龙,漆建平.基于动态分时电价的电动汽车有序充放电研究[J].工业仪表与自动化装置,2017,(04):46-49.
 LI Weisheng,ZHANG Jilong,QI Jianping.A dynamic time-of-use price based order for charging and discharging of electric vehicles[J].Industrial Instrumentation & Automation,2017,(04):46-49.
点击复制

基于动态分时电价的电动汽车有序充放电研究

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2017年04期
页码:
46-49
栏目:
出版日期:
2017-08-15

文章信息/Info

Title:
A dynamic time-of-use price based order for charging and discharging of electric vehicles
文章编号:
1000-0682(2017)04-0000-00
作者:
李伟生1张继龙1漆建平3
(1. 山东省科学院 自动化研究所,济南0250014;2.兰州理工大学 电气工程与信息工程学院,兰州 730050;3.太原理工大学 机械工程学院,太原030024)
Author(s):
LI Weisheng1ZHANG Jilong1 QI Jianping2
(1.Institute of Automation,Shandong Academy of Science,Jianan 250050,China;2.College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China;3.College of Mechanical Engineering ,Taiyuan University of Technology, Taiyuan 030024,China )
关键词:
电动汽车动态分时电价粒子群优化算法用户充电成本峰谷差率
Keywords:
electric vehicles dynamic time-of-use price particle swarm optimization charge cost of user peak-valley ratio
分类号:
TM73
DOI:
-
文献标志码:
A
摘要:
大规模电动汽车随机无序充电将对电网安全运行带来巨大挑战,诸如增大负荷峰谷差、加大运营成本、增加谐波污染等。该文在考虑电动汽车充放电功率约束、电池容量约束的前提下,基于动态分时电价制度,建立电动汽车多目标优化调度模型,以降低电网负荷峰谷差率和用户充电成本,并采用改进学习因子与惯性权重的粒子群优化算法对模型进行求解。仿真结果表明,基于动态分时电价的调度策略比固定电价下优化效果更优,能够更好的减小系统负荷峰谷差率,提高负荷率,增加电力设备的利用率,降低电动汽车充电成本。
Abstract:
The out -of -order charging of electric vehicles will bring great challenges to the safe operation of power grid,such as increasing the load of the peak-valley ratio, the operating costs,the harmonic pollution etc.In this paper,considering the constraints of the charging/ discharging power and the electricity quantity stored in the battery of electric vehicles,based on dynamic time-of-use price system,establishing a multi-objective optimization scheduling model for electric vehicles,in order to reduce peak-valley ratio of grid load and valley load and charge cost of user.The model is solved by modifying particle swarm optimization based on learning factor and inertia weight.Simulation results show that the scheduling strategy based on dynamic time-of-use price is better than the fixed price,and it can reduce the system load peak-valley ratio better,increasing the load rate and the utilization of power equipment,reducing the charge cost of electric vehicles.

参考文献/References:

[1] 胡泽春,宋永华,徐智威,等.电动汽车接入电网的影响与利用[J].中国电机工程学报, 2012, 32(4): 1-10.

[2] 杨秀菊,白晓清,李佩杰,等.电动汽车规模化接入配电网的充电优化[J].电力自动化设备, 2015, 35(6): 31-36.
[3] 温令云.基于CROA的智能电网电动汽车调度运行研究[D].青岛:青岛大学, 2014.
[4] 韩海英,和敬涵,王小君.基于改进粒子群算法的电动车参与负荷平抑策[J].电网技术, 2011, 35(10): 165-169.
[5] 孙晓明,王玮,苏粟,等.基于分时电价的电动汽车有序充电控制设计[J].电力系统自动化, 2013, 37(1): 191-195.
[6] 邹文,吴福宝,刘志宏.实时电价下插电式混合动力汽车智能集中充电策略[J].电力系统自动化,2011,36(11): 30-37.
[7] 魏大钧,张承慧,孙波,等.基于分时电价的电动汽车充放电多目标优化调度[J].电网技术,2014,38(11):2972-2977.
[8] 徐智威,胡泽春,宋永华,等.基于动态分时电价的电动汽车充电站有序充电策略[J].中国电机工程学报,2014, 34(22): 3638-3646.
[9] 阮文骏,王蓓蓓,李扬,等.峰谷分时电价下的用户响应行为研究[J].电网技术,2012,36(7):86-93.

相似文献/References:

[1]张明光,周 君.含电动汽车及光伏发电的微电网控制策略研究[J].工业仪表与自动化装置,2015,(06):113.
 ZHANG Mingguang,ZHOU Jun.A control strategy study for electric vehicles and PV in microgrid[J].Industrial Instrumentation & Automation,2015,(04):113.
[2]朱春颖,沈海军,吴晓飞,等.电动汽车智能有序充电模式[J].工业仪表与自动化装置,2016,(04):75.
 ZHU Chunying,SHEN Haijun,WU Xiaofei,et al.The electric car orderly intelligent charging mode[J].Industrial Instrumentation & Automation,2016,(04):75.
[3]李万敏,李新勇,王 彦,等.电动汽车永磁同步电机控制策略研究[J].工业仪表与自动化装置,2018,(03):30.[doi:1000-0682(2018)03-0000-00]
 LI Wanmin,LI Xinyong,WANG Yan,et al.Research on control strategy on permanent magnet synchronous motor for electric vehicle[J].Industrial Instrumentation & Automation,2018,(04):30.[doi:1000-0682(2018)03-0000-00]
[4]邓孝祥,王鑫鑫,李 鹏,等.超级电容器储能在电动汽车中的应用研究[J].工业仪表与自动化装置,2018,(06):48.[doi:1000-0682(2018)06-0000-00]
 DENG Xiaoxiang,WANG Xinxin,LI Peng,et al.Research on the application of super capacitor energy storage in electric vehicle[J].Industrial Instrumentation & Automation,2018,(04):48.[doi:1000-0682(2018)06-0000-00]
[5]王 琨,高敬更,张勇红,等.基于LSTM神经网络的复合变量电动汽车充电负荷预测方法技术研究[J].工业仪表与自动化装置,2019,(01):27.[doi:1000-0682(2019)01-0000-00]
 WANG Kun,GAO Jinggeng,ZHANG Yonghong,et al.Study on forecasting method of charging load of hybrid variable electric vehicle based on LSTM neural network[J].Industrial Instrumentation & Automation,2019,(04):27.[doi:1000-0682(2019)01-0000-00]
[6]高敬更,李 项,张勇红,等.基于PSO算法的电动汽车电能计量优化[J].工业仪表与自动化装置,2019,(02):49.[doi:1000-0682(2019)02-0000-00]
 GAO Jinggeng,LI Xiang,ZHANG Yonghong,et al.An electric vehicle energy metering optimization based on particle swarm optimization[J].Industrial Instrumentation & Automation,2019,(04):49.[doi:1000-0682(2019)02-0000-00]
[7]高敬更,王 琨,王兴贵,等.一种电动汽车充电站三相电压自动平衡充电系统[J].工业仪表与自动化装置,2019,(04):27.[doi:1000-0682(2019)04-0000-00]
 GAO Jinggeng,WANG Kun,WANG Xinggui,et al.Three-phase voltage automatic balance charging system for electric vehicle charging station[J].Industrial Instrumentation & Automation,2019,(04):27.[doi:1000-0682(2019)04-0000-00]

备注/Memo

备注/Memo:
收稿日期:2016-06-06
基金项目:国家自然科学基金(51267011)
作者简介:包广清(1972),女,甘肃兰州人,博士,教授,博士生导师,研究方向为
更新日期/Last Update: 1900-01-01