|本期目录/Table of Contents|

[1]王 权,李 军,戴 立.基于BP神经网络的电动伺服加载算法研究[J].工业仪表与自动化装置,2017,(02):8-14.
 WANG Quan,LI Jun,DAI Li.Research on electric loading simulator algorithms based on BP neural network[J].Industrial Instrumentation & Automation,2017,(02):8-14.
点击复制

基于BP神经网络的电动伺服加载算法研究

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2017年02期
页码:
8-14
栏目:
出版日期:
2017-04-15

文章信息/Info

Title:
Research on electric loading simulator algorithms based on BP neural network
文章编号:
1000-0682(2017)02-0000-00
作者:
王 权李 军戴 立
(南京理工大学 自动化学院,南京 210094)
Author(s):
WANG Quan LI Jun DAI Li
(School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China)
关键词:
电动加载系统BP神经网络多余力矩复合控制
Keywords:
electric loading system BP neural network surplus torque compound control
分类号:
TP302
DOI:
-
文献标志码:
A
摘要:
该文从加载控制器角度出发将BP神经网络算法引入加载系统削弱多余力矩对系统的影响,提高加载精度。建立了电动伺服加载系统的数学模型,分析了多余力矩的产生原因以及基于结构不变原理存在的局限性。介绍了BP神经网络控制算法基本原理,并给出了具体控制结构及相应算法,设计了一种BP/PID复合控制器。仿真结果表明,复合控制器有效地抑制了系统的多余力矩,降低跟踪误差,改善加载系统的动态性能,提高了跟踪精度,增强了稳定性。
Abstract:
This paper introduces the intelligent control algorithm of BP neural network into the loading system to weaken the influence of surplus torque on the system, and to improve the accuracy of loading.Firstly, the mathematical model of the electric servo loading system is established, and the reasons of the surplus torque and the limitation of the structure invariance principle are analyzed. Secondly, this paper introduces the basic principle of BP neural network control algorithm, and gives the concrete control structure and the corresponding algorithm, and designs a kind of BP/PID composite controller.The simulation result shows that the composite controller can not only effectively restrain the surplus torque of system, reduce tracking error and improve the dynamic performance of the loading system, but also improve the tracking precision and enhace the stability.

参考文献/References:

[1] 王跃轩,陈俊杰,黄玉平,等.新型舵机负载模拟系统电动加载技术研究[J].航天控制,2014,32(2):78-86.

[2] 张举中,王新民,张菊丽.电动负载模拟器中多余力矩的新型抑制方法[J].微电机,2007,40(7): 18-20,67.
[3] 卢娟,葛锁良.BP神经网络PID在三容系统中的控制研究[J].控制理论与控制工程,2009,21(2): 14-16.?
[4] 史春朝.BP神经网络算法的改进及其在PID控制中的应用研究[J].控制理论与控制工程,2006 18-22
[5] 郭丽,石航飞.BP 神经网络在双伺服同步运动系统中的应用[J].兵工自动化,2011,30(1):44-46.
[6] 王军晓,林青松.基于BP 神经网络的PID控制器在伺服系统中的应用研究[J].工矿自动化,2010 (5):68-70.
[7] 刘益民,李变侠.基于改进BP神经网络的PID控制方法的研究[D].中国科学院研究生院,2007:12-25.
[8] Zeng-hui ZHU, Hui-ying SUN. Application of PID Controller Based on BP Neural Network in Export Stream’s Temperature Control System[J].Journal of Measurement Scienceand Instrumentation,2011,2(1): 84-87.
[9] 王敬志,任开春.基于BP神经网络整定的PID控制[J].工业控制计算机,2011,24(3): 72-73.
[10] 方强,姚郁.被动式力矩伺服控制系统设计方法及应用研究[D].哈尔滨工业大学,2006: 1-5.
[11] 刘金琨.先进PID控制MATLAB仿真[M].3版.北京:电子工业出版社,2011.
[12] Ji Xuewu, WangJian. Path Planning and Tracking for Vehicle Parallel Parking Based on Preview BP Neural Network PID Controller[J].Transactions of Tianjin Univ., 2015(21): 199-208.
[13] 王永骥,涂健.神经网络控制[M].北京:机械工业出版社, 1998.

相似文献/References:

[1]刘 千,王 堃.基于BP神经网络的防空目标识别方法[J].工业仪表与自动化装置,2015,(02):94.
 LIU Qian,WANG Kun.The research of the air defense target recognition based on BP neural network[J].Industrial Instrumentation & Automation,2015,(02):94.
[2]李春华,徐少雄.基于PSO的RBF神经网络的变频调速系统的研究[J].工业仪表与自动化装置,2015,(03):3.
 LI Chuanhua XU Shaoxiong.The research of variable frequency speed control system based on PSO-RBFneural network[J].Industrial Instrumentation & Automation,2015,(02):3.
[3]巴寅亮,王书提,谢 鑫.基于改进的BP神经网络的柴油发动机故障诊断[J].工业仪表与自动化装置,2015,(03):94.
 BA Yinliang,WANG Shuti,XIE Xin.Research of diesel engine fault based on improved BP neural network[J].Industrial Instrumentation & Automation,2015,(02):94.
[4]李珊珊,李一民,郭真真.基于神经网络的分阶车牌字符识别算法研究[J].工业仪表与自动化装置,2016,(02):7.
 LI Shanshan,LI Yimin,GUO Zhenzhen.Research on a phased license plate character recognition algorithm based on neural network[J].Industrial Instrumentation & Automation,2016,(02):7.
[5]钱修生,李 军.提高电动伺服加载系统抗扰动能力的研究[J].工业仪表与自动化装置,2016,(02):58.
 QIAN Xiusheng,LI Jun.Research on improving anti-disturbance capability of electric loading simulator[J].Industrial Instrumentation & Automation,2016,(02):58.
[6]汤会增,韩 湘,毛建坤,等.基于BP网络的GIS局部放电声电联合检测故障定位方法[J].工业仪表与自动化装置,2016,(04):57.
 TANG Huizeng,HAN Xiang,MAO Jiankun,et al.The fault location method of acoustic electric joint partial discharge detection based on BP network in GIS[J].Industrial Instrumentation & Automation,2016,(02):57.
[7]梁书立,冯渭春.空间机械手末端位姿修正模型构建方法[J].工业仪表与自动化装置,2017,(03):3.
 LIANG Shuli,FENG Weichun.Method of building correction model of end position and posture on space manipulator[J].Industrial Instrumentation & Automation,2017,(02):3.
[8]王江荣,白保琦.基于GA-BP算法的混凝土抗压强度指标筛选[J].工业仪表与自动化装置,2017,(06):10.[doi:1000-0682(2017)06-0010-05]
 WANG Jiangrong,BAI Baoqi.Selection of concrete compressive strength index based on GA-BP algorithm[J].Industrial Instrumentation & Automation,2017,(02):10.[doi:1000-0682(2017)06-0010-05]
[9]万 磊,唐文政,李岳明.智能水下机器人BP神经网络S面控制[J].工业仪表与自动化装置,2019,(02):13.[doi:1000-0682(2019)02-0000-00]
 WAN Lei,TANG Wenzheng,LI Yueming.BP neural network S plane control for autonomous underwater vehicle[J].Industrial Instrumentation & Automation,2019,(02):13.[doi:1000-0682(2019)02-0000-00]
[10]白建云a,孟新雨b,雷秀军a,等.基于BP神经网络的直接空冷凝汽器出口风温预测[J].工业仪表与自动化装置,2019,(02):63.[doi:1000-0682(2019)02-0000-00]
 BAI Jianyuna,MENG Xinyub,LEI Xiujuna,et al.Prediction of outlet air temperature of direct air condenser based on BP neural network[J].Industrial Instrumentation & Automation,2019,(02):63.[doi:1000-0682(2019)02-0000-00]

备注/Memo

备注/Memo:
收稿日期:2016-06-27
作者简介:王权(1992),男,硕士研究生,主要研究方向为加载系统控制算法研究。
更新日期/Last Update: 1900-01-01