|本期目录/Table of Contents|

[1]刘洪玮.遗传算法在模糊PID交流电机矢量控制系统中的应用[J].工业仪表与自动化装置,2018,(01):120-123.[doi:1000-0682(2018)01-0000-00]
 LIU Hongwei.Application of algorithm genetic in fuzzy PID vector control system of AC motor[J].Industrial Instrumentation & Automation,2018,(01):120-123.[doi:1000-0682(2018)01-0000-00]
点击复制

遗传算法在模糊PID交流电机矢量控制系统中的应用

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2018年01期
页码:
120-123
栏目:
出版日期:
2018-02-15

文章信息/Info

Title:
Application of algorithm genetic in fuzzy PID vector control system of AC motor
作者:
刘洪玮
宁波龙光灯具设计有限公司,上海 201100
Author(s):
LIU Hongwei
Ningbo dragon lighting design Co., Ltd, Shanghai 201100,China
关键词:
遗传算法矢量控制模糊控制模糊PID控制仿真
Keywords:
genetic algorithm vector control fuzzy control fuzzy-PID control simulation
分类号:
TM341
DOI:
1000-0682(2018)01-0000-00
文献标志码:
A
摘要:
交流电机矢量控制系统是一个非线性、强耦合性、时变的复杂系统,用传统的PID难以达到理想的控制效果,而基于模糊控制原理与传统PID原理相结合的模糊PID控制器取决于模糊控制规则,但规则的设置依赖人的主观经验,不一定能达到最优。该文结合遗传算法和模糊PID控制的优点,用模糊推理在线整定PID控制参数,利用遗传算法优化模糊控制规则。仿真结果表明,这是一种非常有效的控制方法,能够达到理想的控制效果。
Abstract:
It is difficult to achieve the desired control in vector control system for AC motor by using the ordinary PID controller due to the control system is a nonlinear, strong couple, and complicated time-varying system. A fuzzy-PID controller that based on the fuzzy control theory and ordinary PID principle depends on control rules, which comes from subjective experience and always is not optimal. The combination of genetic algorithm with the fuzzy PID control is used to optimize fuzzy control rules of fuzzy PID control system, and make use of fuzzy reasoning on-line to adjust PID control parameter. The result of simulation indicates that the control strategy is effective, and the control effect is pretty good.

参考文献/References:

[1] 田晓宇,吴延华.基于DSP模糊控制的矢量调速系统[J].电子元器件应用,2008,10(8):30-31, 35.

[2] 杨耕,罗应力.电机与运动控制系统[M].北京:清华大学出版社, 2006.
[3] 党建武,赵庶旭,王阳萍.模糊控制技术[M].北京:中国铁道出版社,2007.
[4] Implementation of a speed field orientated control of three phases AC induction motor using TMS320F240[Z]. Texas Instrument Europe,1998.
[5] 周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999:20-56.
[6] 金晶,苏勇.一种改进的自适应遗传算法[J].计算机工程与应用,2005(1):64-69.
[7] Yuan Xiaohui,Cao Ling,Xia Liangzheng. Adaptive genetic algorithm with the criterion of premature convergence[J]. Journal of Southeast University(English Edition),2003, 19(1): 40-43.
[8] 薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用[M]. 北京:清华大学出版社,2005.

相似文献/References:

[1]刘若涵,赵振民,赵 杰.基于神经网络与遗传算法的悬臂式掘进机智能控制系统[J].工业仪表与自动化装置,2014,(06):67.
 LIU Ruohan,ZHAO Zhenmin,ZHAO Jie.The boom-type roadheader intelligent control system based on neural network and genetic algorithms[J].Industrial Instrumentation & Automation,2014,(01):67.
[2]梁书立,冯渭春.空间机械手模型参数在轨标定方法研究[J].工业仪表与自动化装置,2017,(02):3.
 LIANG Shuli,FENG Weichun.Research on the on-orbit calibration of space manipulator model parameter[J].Industrial Instrumentation & Automation,2017,(01):3.
[3]李 珣,刘 瑶,周 健,等.基于改进遗传算法的交通信号配时优化模型[J].工业仪表与自动化装置,2017,(04):125.
 LI Xun,LIU Yao,ZHOU Jian,et al.An optimization model of traffic signal cooperative timing based on improved GA[J].Industrial Instrumentation & Automation,2017,(01):125.
[4]王江荣,白保琦.基于GA-BP算法的混凝土抗压强度指标筛选[J].工业仪表与自动化装置,2017,(06):10.[doi:1000-0682(2017)06-0010-05]
 WANG Jiangrong,BAI Baoqi.Selection of concrete compressive strength index based on GA-BP algorithm[J].Industrial Instrumentation & Automation,2017,(01):10.[doi:1000-0682(2017)06-0010-05]
[5]董星言,杨金波,胡小龙.无传感器永磁同步电机控制策略研究[J].工业仪表与自动化装置,2018,(02):8.[doi:1000-0682(2018)02-0000-00]
 DONG Xingyan,YANG Jinbog,HU Xiaolong.Research on the control strategy of the sensorless permanent magnet synchronous motor[J].Industrial Instrumentation & Automation,2018,(01):8.[doi:1000-0682(2018)02-0000-00]
[6]郭松林,王光辉.基于人工蜂群算法优化采煤机伺服系统PID参数[J].工业仪表与自动化装置,2018,(02):29.[doi:1000-0682(2018)02-0000-00]
 GUO Songlin,WANG Guanghui.Optimization of PID parameters of hydraulic servo system based on artificial bee colony algorithm[J].Industrial Instrumentation & Automation,2018,(01):29.[doi:1000-0682(2018)02-0000-00]
[7]黄启岚,康 敏,卞韩斌.多相电机驱动控制系统的设计与实现[J].工业仪表与自动化装置,2021,(04):58.[doi:10.19950/j.cnki.cn61-1121/th.2021.04.012]
 HUANG Qilan,KANG Min,et al.Design and realization of multi-phase motor drive control system[J].Industrial Instrumentation & Automation,2021,(01):58.[doi:10.19950/j.cnki.cn61-1121/th.2021.04.012]
[8]臧春华,张帅杰,苏宝玉.基于最小二乘辨识模型的PID自整定应用研究[J].工业仪表与自动化装置,2021,(05):67.[doi:10.19950/j.cnki.cn61-1121/th.2021.05.015]
 ZANG Chunhua,ZHANG Shuaijie,SU Baoyu.Application research of PID auto-tuning based on least squares identification model[J].Industrial Instrumentation & Automation,2021,(01):67.[doi:10.19950/j.cnki.cn61-1121/th.2021.05.015]
[9]曲晓峰,陈光伟.基于改进支持向量机的抽水蓄能发电机转子绕组接地故障检测方法[J].工业仪表与自动化装置,2023,(01):97.[doi:10.19950/j.cnki.cn61-1121/th.2023.01.019]
 QU Xiaofeng,CHEN Guangwei.Ground fault detection method of pumped storage generator rotor winding based on improved support vector machine[J].Industrial Instrumentation & Automation,2023,(01):97.[doi:10.19950/j.cnki.cn61-1121/th.2023.01.019]
[10]何强鉴,赵 刚,水 星,等.基于GA-SVM优化算法的扒渣机器人逆运动学求解研究[J].工业仪表与自动化装置,2023,(06):64.[doi:DOI:10.19950/j.cnki.cn61-1121/th.2023.06.011]
 HE Qiangjian,ZHAO Gang,SHUI Xing,et al.Inverse kinematics of slag raking robot based on GA-SVM optimization algorithm solving research[J].Industrial Instrumentation & Automation,2023,(01):64.[doi:DOI:10.19950/j.cnki.cn61-1121/th.2023.06.011]

备注/Memo

备注/Memo:
收稿日期:2017-06-20
作者简介:刘洪玮(1981),男,工程师,硕士研究生,研究方向为电力电子与电气传动。
更新日期/Last Update: 2018-02-01