|本期目录/Table of Contents|

[1]席 维,白 璘,武奇生.基于经验小波变换和峭度值的滚动轴承故障检测方法[J].工业仪表与自动化装置,2018,(06):26-30.[doi:1000-0682(2018)06-0000-00]
 XI Wei,BAI Lin,WU Qisheng.A novel rolling bearing fault detection method based on empirical wavelet transform and kurtosis value[J].Industrial Instrumentation & Automation,2018,(06):26-30.[doi:1000-0682(2018)06-0000-00]
点击复制

基于经验小波变换和峭度值的滚动轴承故障检测方法

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2018年06期
页码:
26-30
栏目:
出版日期:
2018-12-15

文章信息/Info

Title:
A novel rolling bearing fault detection method based on empirical wavelet transform and kurtosis value
作者:
席 维白 璘武奇生
长安大学 电子与控制工程学院,西安 710064
Author(s):
XI WeiBAI LinWU Qisheng
School of Electronic and Control Engineering,Chang’an University, Xi’an 710064, China
关键词:
经验小波变换故障诊断轴承故障振动信号处理
Keywords:
empirical wavelet transformfault diagnosisbearing fault vibration signal processing
分类号:
TH165.3
DOI:
1000-0682(2018)06-0000-00
文献标志码:
A
摘要:
机械故障信号大多具有复杂多分量和调幅-调频的特点,但目前已有的方法在实际分析大多存在缺陷,为了有效识别故障特征频率,该文提出了一种基于EWT和峭度值的轴承故障检测方法。这种方法通过EWT对滚动轴承的振动信号进行分解,得到多个调频分量(AM-FM),并用文中提出的计算方法得到的各个调频分量的特征指标后进行筛选,得到包含敏感故障信息的分量。将该方法应用于轴承故障信号的解调分析,提高了分析的针对性。将改进方法应用于轴承故障实测信号分析,验证了该方法的准确性。
Abstract:
Most of the mechanical fault signals have complex multi-component and amplitude modulation-frequency modulation characteristics,but most of the existing methods are flawed in practical analysis.In order to effectively identify the fault feature frequency,this paper presents a bearing fault detection based on EWT and kurtosis value method.This method decomposes the vibration signal of the rolling bearing through EWT to obtain a plurality of frequency-modulated components, and filters the characteristic indexes of each frequency-modulated component obtained by the calculation method proposed in the text, and obtains the component containing the sensitive fault information. This method is applied to the demodulation analysis of the bearing fault signal, which improves the pertinence of the analysis. The improved method was applied to analyze the measured signal of bearing failure, and the accuracy of the method was verified.

参考文献/References:

[1] 张晔.信号时频分析及应用[M].哈尔滨:哈尔滨工业大学, 2006.

[2] 李茂,杨录,张艳花.基于EMD及主成分分析的缺陷超声信号特征提取研究[J].中国测试,2018(02):118-121+133.
[3] 孙吉,杨志飞,贺丽.基于短时傅里叶变换的跳频信号分析方法[J].通信对抗,2015,34(04):17-21.
[4] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceeding of the Royal Society A,1998,454(1971): 903-995.
[5] 张超,陈建军.基于EMD 降噪和谱峭度的轴承故障诊断方法[J].机械科学与技术,2015,34(2): 252-256.
[6] 窦东阳,赵英凯.基于EMD 和Lempel-Ziv 指标的滚动轴承损伤程度识别研究[J].振动与冲击,2010,29(3):5-8.
[7] 夏平,徐华,马再超,等.采用改进HVD与Lempel-Ziv复杂性测度的滚动轴承早期损伤程度评估方法[J].西安交通大学学报,2017,51(6):8-13.
[8] Xiong Qing, Xu Yanhai, Peng Yiqiang, et al. Low-speed rolling bearing fault diagnosis based on EMDdenoising and parameter estimate with alpha stable distribution[J]. Journal of Mechanical science and technology,2017,31(4): 1587-1601.
[9] Dybala J, Radoslaw Z. Rolling bearing diagnosing method based on empirical mode decomposition of machine vibration signal[J].AppliedAcoustics,2014,77(3):195-203.
[10] Guo Tai, Deng Zhongmin. An improved EMD method based on the multi-objective optimization and its application to fault feature extraction ofrolling bearing[J]. Applied Acoustics, 2017, 127: 46-62.
[11] GILLES J. Empirical Wavelet Transform[J].IEEE Transactions on Signal Processing,2013,61(16):3999- 4010.
[12] Kedadouche M, Thomas M, Tahan A. A comparative study between Empirical Wavelet Transforms and Empirical Mode Decomposition Methods: Application to bearing defect diagnosis[J].Mechanical Systems & Signal Processing, 2016(81):88-107.
[13] Merainani B, Rahmoune C, “Benazzouz D, et al. Rolling bearing fault diagnosis based empirical wavelet transform using vibration signal[J].International Conference on Modelling,Identification and Control,IEEE,2017: 526-531.
[14] Merainani B, Rahmoune C, Benazzouz D, et al. Fault feature extraction and classification based on HEWT and SVD:Application to rolling bearings under variable conditions[J].International Conference on Systems and Control,IEEE, 2017:433-438.
[15] DAUBECHIES I. DAUBECHIES I. Ten lectures on wavelets[M].Philadelphia:Society for Industrial and Applied Mathematics, 1992.

相似文献/References:

[1]尹新权,王 珺,张亚萍.基于模糊理论的柴油机故障诊断专家系统[J].工业仪表与自动化装置,2015,(01):111.
 YIN Xinquan,WANG Jun,ZHANG Yaping.Fault diagnostic expert system of diesel engine based on fuzzy theory[J].Industrial Instrumentation & Automation,2015,(06):111.
[2]孟文俊a,徐光华a,b,等.基于LabVIEW的滚动轴承非平稳过程监测诊断及性能评估系统的开发[J].工业仪表与自动化装置,2015,(02):18.
 MENG Wenjuna,XU Guanghuaa,b,et al.Development of non-stationary process for rolling bearing fault diagnosis and performance evaluation system based on LabVIEW[J].Industrial Instrumentation & Automation,2015,(06):18.
[3]李 茜,王延年.基于普通铣床数控化的S7-300 PLC远程监控和故障诊断系统设计[J].工业仪表与自动化装置,2015,(02):49.
 LI Qian,WANG Yannian.Design of remote monitoring and fault diagnosis systembased on the ordinary milling machine of numerical control of S7-300 PLC[J].Industrial Instrumentation & Automation,2015,(06):49.
[4]巴寅亮,王书提,谢 鑫.基于改进的BP神经网络的柴油发动机故障诊断[J].工业仪表与自动化装置,2015,(03):94.
 BA Yinliang,WANG Shuti,XIE Xin.Research of diesel engine fault based on improved BP neural network[J].Industrial Instrumentation & Automation,2015,(06):94.
[5]王江荣,文 晖,黄建华.基于差分进化算法的二次回归在矿井通风机故障诊断中的应用[J].工业仪表与自动化装置,2015,(01):50.
 WANG Jiangrong,WEN Hui,HUANG Jianhua.The two regression in ventilator fault diagnosis application based on difference evolutionary algorithm[J].Industrial Instrumentation & Automation,2015,(06):50.
[6]张卫峰,惠俊军.智能故障诊断技术的现状及展望[J].工业仪表与自动化装置,2017,(05):21.
 ZHANG Weifeng,HUI Junjun.The present situation and prospects of intelligence fault diagnosis technology[J].Industrial Instrumentation & Automation,2017,(06):21.
[7]宫玮丽,梁 波,王晓兰.基于小波包和Hilbert包络分析的隧道掘进机主轴承故障诊断方法研究[J].工业仪表与自动化装置,2018,(02):15.[doi:1000-0682(2018)02-0000-00]
 GONG Weili,LIANG Bo,WANG Xiaolan.Research on fault diagnosis method of main bearing of tunnel boring machine based on wavelet packet and Hilbert envelope analysis[J].Industrial Instrumentation & Automation,2018,(06):15.[doi:1000-0682(2018)02-0000-00]
[8]张远绪,程换新.基于改进的RBF神经网络的滚动轴承故障诊断[J].工业仪表与自动化装置,2018,(06):31.[doi:1000-0682(2018)06-0000-00]
 ZHANG Yuanxu,CHENG Huanxin.Fault diagnosis of rolling bearing based on improved RBF neural network[J].Industrial Instrumentation & Automation,2018,(06):31.[doi:1000-0682(2018)06-0000-00]
[9]郭兰中,彭刘阳,窦 岩,等.基于小波包-AR谱和GA-BP网络的轴承故障诊断研究[J].工业仪表与自动化装置,2019,(03):3.[doi:1000-0682(2019)03-0000-00]
 GUO Lanzhong,PENG Liuyang,DOU Yan,et al.Research on bearing fault diagnosis based on wavelet packet –auto regressive model spectrum and GA-BP neural network[J].Industrial Instrumentation & Automation,2019,(06):3.[doi:1000-0682(2019)03-0000-00]
[10]肖亚苏,张令品,俞永江,等.海水淡化远程互动故障诊断平台的设计与实现[J].工业仪表与自动化装置,2019,(05):33.[doi:1000-0682(2019)05-0000-00]
 XIAO Yasu,ZHANG Lingpin,YU Yongjiang,et al.Design and realize of remote interactive fault diagnosis platform for seawater desalination[J].Industrial Instrumentation & Automation,2019,(06):33.[doi:1000-0682(2019)05-0000-00]

备注/Memo

备注/Memo:
收稿日期:2018-05-14
基金项目:中央高校基本业务科研费(高新技术)(300102328201)
作者简介:席维(1993),女,硕士,研究方向为故障诊断等。
更新日期/Last Update: 2018-12-15