[1]郭兰中,彭刘阳,窦 岩,等.基于小波包-AR谱和GA-BP网络的轴承故障诊断研究[J].工业仪表与自动化装置,2019,(03):3-7.[doi:1000-0682(2019)03-0000-00]
GUO Lanzhong,PENG Liuyang,DOU Yan,et al.Research on bearing fault diagnosis based on wavelet packet –auto regressive model spectrum and GA-BP neural network[J].Industrial Instrumentation & Automation,2019,(03):3-7.[doi:1000-0682(2019)03-0000-00]
点击复制
基于小波包-AR谱和GA-BP网络的轴承故障诊断研究
参考文献/References:
[1] 孟文俊,徐光华,姜阔胜,等.基于LabVIEW的滚动轴承非平稳过程监测诊断及性能评估系统的开发[J].工业仪表与自动化装置,2015(02):18-22.[2] Wei Z,Wang Y,He S,et al.A novel intelligent method for bearing fault diagnosis based on affinity propagation clustering and adaptive feature selection[J]. Knowledge- Based Systems,2017,116(C):1-12.
[3] 常春,王国威,梅检民,等.基于小波包-AR谱和支持向量机的连杆轴承故障诊断[J].军事交通学院学报,2015, 17(04):40-44.
[4] 李国勇,杨丽娟.神经?模糊?预测控制及其MATLAB实现[M].北京:电子工业出版社,2013:17-26.
[5] Li X,Xiang S,Zhu P,et al.Establishing a Dynamic Self- Adaptation Learning Algorithm of the BP Neural Network and Its Applications[J].International Journal of Bifurcation & Chaos,2015,25(14):1540030.
[6] 张玲玲,赵懿冠,肖云魁,等.基于小波包-AR谱的变速器轴承故障特征提取[J].振动.测试与诊断,2011,31(04): 492-495+537.?
[7] 肖云魁,李世义,王建新,等.基于小波包-AR谱技术提取柴油发动机曲轴轴承故障特征[J].北京理工大学学报, 2004(06):508-511.
[8] 赵永标,张其林,康长青.基于GA-BP算法的水电机组故障诊断模型[J].洛阳理工学院学报(自然科学版),2011, 21(01):41-43+52.
[9] Jin M, Li R, Xu Z, et al. Reliable fault diagnosis method using ensemble fuzzy ARTMAP based on improved Bayesian belief method[J].Neurocomputing,2014,133: 309-316.
[10] The case western reserve university bearing data center [EB/OL].(2012-11-07) [2013-12-01]. http://csegroups.case. edu/bearingdatacenter/pages/download-data-file.
相似文献/References:
[1]寇为刚,谭等泰.基于EEMD和小波包分解在滚动轴承故障信息提取中的分析对比[J].工业仪表与自动化装置,2015,(04):101.
KOU Weigang,TAN Dengtai.Analysis of extracting the fault information about rolling bearings based on EEMD and WPD[J].Industrial Instrumentation & Automation,2015,(03):101.