|本期目录/Table of Contents|

[1]白建云a,孟新雨b,雷秀军a,等.基于BP神经网络的直接空冷凝汽器出口风温预测[J].工业仪表与自动化装置,2019,(02):63-67.[doi:1000-0682(2019)02-0000-00]
 BAI Jianyuna,MENG Xinyub,LEI Xiujuna,et al.Prediction of outlet air temperature of direct air condenser based on BP neural network[J].Industrial Instrumentation & Automation,2019,(02):63-67.[doi:1000-0682(2019)02-0000-00]
点击复制

基于BP神经网络的直接空冷凝汽器出口风温预测

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2019年02期
页码:
63-67
栏目:
出版日期:
2019-04-15

文章信息/Info

Title:
Prediction of outlet air temperature of direct air condenser based on BP neural network
作者:
白建云a孟新雨b雷秀军a苑文鑫b任 岐a
山西大学 a. 自动化系;b. 数学科学学院,太原 030013
Author(s):
BAI Jianyuna MENG Xinyub LEI Xiujuna YUAN Wenxinb REN Qia
a. Department of Automation;?
b. School of Mathematical Sciences, Shanxi University, Taiyuan 030013, China
关键词:
直接空冷凝汽器BP神经网络出口风温预测模型
Keywords:
direct air-cooled condenser BP neural network outlet wind temperature prediction model
分类号:
TK39
DOI:
1000-0682(2019)02-0000-00
文献标志码:
A
摘要:
由于直接空冷系统的动态参数监测技术比较单一,为了便于对出口风温测点的研究,提出一种基于BP神经网络的空冷凝汽器出口风温预测模型。以某矸石电厂2×300 MW直接空冷凝汽器为对象进行研究,分别从锅炉侧与凝汽器侧分析影响空冷凝汽器出口风温的的因素,从现场DCS系统分别采集各因素历史数据,对数据进行预处理后,运用BP神经网络建立空冷凝汽器出口风温预测模型。用现场实际运行数据验证模型的有效性。该模型可以预测不同工况下的空冷凝汽器的出口风温,为下一步制定动态参数监测技术提供依据,合理安排空冷凝汽器温度测点的位置和数量,也可以为空冷凝汽器的清洗周期做一个参考。
Abstract:
The dynamic parameter monitoring technology for direct air cooling system is relatively simple.In order to facilitate the research of outlet wind temperature measurement point,this paper proposes a BP air network based air conditioning model for air condenser cooling.Taking a coal gangue power plant 2×300 MW direct air-cooled steam condenser as an object for research.The factors affecting the air temperature at the outlet of the air condenser are analyzed from the boiler side and the condenser side respectively.The historical data of each factor are collected from the on-site DCS system.After the data is preprocessed, the BP neural network is used to establish the air temperature prediction model of the air condenser.The actual operational data of the site is used to verify the validity of the model. The model can predict the outlet air temperature of the air condenser under different working conditions, provide a basis for the next step of developing dynamic parameter monitoring technology, and reasonably arrange the position and quantity of the air condenser temperature measuring point, or it can be an air condenser. The cleaning cycle is a reference.

参考文献/References:

[1] 米得阿斯(E S Milaras).空冷式发电厂[M].王俊,金承海,译.北京:机械工业出版社,1986.

[2] 丁尔谋.发电厂空冷技术[M].北京:水利电力出版社, 1992.
[3] 邱丽霞,郝艳红,李润林,等.直接空冷汽轮机及其热力系统[M].北京:中国电力出版社,2006:6-7.
[4] 黄其励,谢克昌,等.先进燃煤发电技术[M].北京:科学出版社,2014:46-46.
[5] 金秀章,许铁,张建辉.300 MW机组空冷岛温度监测系统的设计[J].计算机仿真,2013(11):112-114.
[6] 米路,翟永杰,韩超,等.基于无线通信的空冷岛温度场监测系统[J].仪器仪表用户,2015(4):33-36.
[7] 许铁,金秀章.基于I FIX的空冷岛温度场监测系统[J].电力科学与工程,2013(7):74-78.
[8] Zhihua Ge, Xiaoze Du, Lijun Yang, et al. Performance monitoring of direct air-cooled power generating unit with infrared thermography[J].Applied Thermal Engineering, 2011,31(4):418-424.
[9] 许铁.空冷岛温度场的构建及防冻优化调整[D].北京:华北电力大学,2014.
[10] 廖光明,陈冠兵,高建强.温度在线监测与分析系统在直接空冷发电机组上的应用[J].应用能源技术,2013(7): 43-47.
[11] 白建云,邵加晓,侯鹏飞.600 MW直接空冷机组背压控制策略的设计及优化[J].电站系统工程,2011,27(2): 39-42.
[12] 刘金琨.智能控制[M].北京:电子工业出版社,2009.
[13] 杨立军,杜小泽,杨勇平,等.火电站直接空冷凝汽器性能考核评价方法[J].中国电机工程学报,2007,27(2):59-63.
[14] Gholizadeh S, Pirmoz A, Attarnejad R. Assessment of load carrying capacity of castellated steel beams by neural networks[J].Journal of Constructional Steel Research, 2011, 67(5):770-779.
[15] Danaher S, Datta S, Waddle I, et al. Erosion modelling using Bayesian regulated artificial neural networks[J]. Wear, 2004, 256(9):879-888.

相似文献/References:

[1]刘 千,王 堃.基于BP神经网络的防空目标识别方法[J].工业仪表与自动化装置,2015,(02):94.
 LIU Qian,WANG Kun.The research of the air defense target recognition based on BP neural network[J].Industrial Instrumentation & Automation,2015,(02):94.
[2]李春华,徐少雄.基于PSO的RBF神经网络的变频调速系统的研究[J].工业仪表与自动化装置,2015,(03):3.
 LI Chuanhua XU Shaoxiong.The research of variable frequency speed control system based on PSO-RBFneural network[J].Industrial Instrumentation & Automation,2015,(02):3.
[3]巴寅亮,王书提,谢 鑫.基于改进的BP神经网络的柴油发动机故障诊断[J].工业仪表与自动化装置,2015,(03):94.
 BA Yinliang,WANG Shuti,XIE Xin.Research of diesel engine fault based on improved BP neural network[J].Industrial Instrumentation & Automation,2015,(02):94.
[4]李珊珊,李一民,郭真真.基于神经网络的分阶车牌字符识别算法研究[J].工业仪表与自动化装置,2016,(02):7.
 LI Shanshan,LI Yimin,GUO Zhenzhen.Research on a phased license plate character recognition algorithm based on neural network[J].Industrial Instrumentation & Automation,2016,(02):7.
[5]汤会增,韩 湘,毛建坤,等.基于BP网络的GIS局部放电声电联合检测故障定位方法[J].工业仪表与自动化装置,2016,(04):57.
 TANG Huizeng,HAN Xiang,MAO Jiankun,et al.The fault location method of acoustic electric joint partial discharge detection based on BP network in GIS[J].Industrial Instrumentation & Automation,2016,(02):57.
[6]王 权,李 军,戴 立.基于BP神经网络的电动伺服加载算法研究[J].工业仪表与自动化装置,2017,(02):8.
 WANG Quan,LI Jun,DAI Li.Research on electric loading simulator algorithms based on BP neural network[J].Industrial Instrumentation & Automation,2017,(02):8.
[7]梁书立,冯渭春.空间机械手末端位姿修正模型构建方法[J].工业仪表与自动化装置,2017,(03):3.
 LIANG Shuli,FENG Weichun.Method of building correction model of end position and posture on space manipulator[J].Industrial Instrumentation & Automation,2017,(02):3.
[8]王江荣,白保琦.基于GA-BP算法的混凝土抗压强度指标筛选[J].工业仪表与自动化装置,2017,(06):10.[doi:1000-0682(2017)06-0010-05]
 WANG Jiangrong,BAI Baoqi.Selection of concrete compressive strength index based on GA-BP algorithm[J].Industrial Instrumentation & Automation,2017,(02):10.[doi:1000-0682(2017)06-0010-05]
[9]万 磊,唐文政,李岳明.智能水下机器人BP神经网络S面控制[J].工业仪表与自动化装置,2019,(02):13.[doi:1000-0682(2019)02-0000-00]
 WAN Lei,TANG Wenzheng,LI Yueming.BP neural network S plane control for autonomous underwater vehicle[J].Industrial Instrumentation & Automation,2019,(02):13.[doi:1000-0682(2019)02-0000-00]
[10]高 林,李琪琪.基于交通流数据的交通状态判别算法研究[J].工业仪表与自动化装置,2020,(02):8.
 GAO Lin,LI Qiqi.Research on traffic state discrimination algorithm based on traffic flow data[J].Industrial Instrumentation & Automation,2020,(02):8.

备注/Memo

备注/Memo:
收稿日期:2019-02-18
基金项目:国家自然科学基金项目(U1610116);山西省科技重大专项基金资助项目(MD2016-02)
作者简介:白建云(1962),女,山西人,学士,教授,主要研究方向为大型发电机组智能优化控制。
更新日期/Last Update: 2019-04-15