|本期目录/Table of Contents|

[1]姚 林,张 岩.基于分布式稀疏LS的热轧过程质量相关故障检测[J].工业仪表与自动化装置,2020,(06):65-68.[doi:1000-0682(2020)06-0000-00]
 YAO Lin,ZHANG Yan.Quality-related fault detection for hot rolling processes based on distributed sparse LS[J].Industrial Instrumentation & Automation,2020,(06):65-68.[doi:1000-0682(2020)06-0000-00]
点击复制

基于分布式稀疏LS的热轧过程质量相关故障检测

《工业仪表与自动化装置》[ISSN:1000-0682/CN:61-1121/TH]

卷:
期数:
2020年06期
页码:
65-68
栏目:
出版日期:
2020-12-15

文章信息/Info

Title:
Quality-related fault detection for hot rolling processes based on distributed sparse LS
作者:
姚 林张 岩
1. 鞍钢集团有限公司,辽宁 鞍山 114021 ;
2. 鞍钢集团北京研究院有限公司,北京 102200
Author(s):
YAO Lin1ZHANG Yan2
1. Ansteel Group Co., LTD, Liaoning Anshan 114021, China;
2. Beijing Research Institute of Ansteel Co. ,LTD, Beijing 102200, China
关键词:
质量相关故障检测分布式稀疏LS热轧过程
Keywords:
quality-related fault detection distributed sparse LS hot rolling process
分类号:
TP277
DOI:
1000-0682(2020)06-0000-00
文献标志码:
A
摘要:
质量相关故障检测是保障热轧过程安全运行和质量稳定的重要手段,是当前流程工业过程控制领域的研究热点。针对传统最小二乘(LS)方法求解参数存在过拟合及故障检测实时性不强等问题,该文将分布式优化与1-范数正则化思想引入到过程变量与质量变量相关关系建模中,提出了基于分布式稀疏LS(DSLS)方法,通过设计合理的监测统计量和控制限,实现了质量相关故障检测。通过热轧过程现场数据进行仿真验证,并与传统方法对比,验证了新算法的有效性。
Abstract:
Quality-related fault detection is an important mean to ensure safe operation and stable quality for hot rolling processes, which, thus, have recently become hotspots in the process industrial control domain. In this paper, a DSLS-based quality-related fault detection method is developed by distributed optimization and L1 norm regularization, and the associated statistics and thresholds are designed, which aims at addressing the issues on parameter overfitting and poor real-time performance for the traditional LS. Moreover, a case study on hot rolling process is finally given to compare with other methods to demonstrate the advantages of the new approach.

参考文献/References:

[1] 钱锋,杜文莉,钟伟民,等.石油和化工行业智能优化制造若干问题及挑战[J].自动化学报,2017,43(06):893-901.

[2] 桂卫华,阳春华,陈晓方,等.有色冶金过程建模与优化的若干问题及挑战[J].自动化学报,2013,39(03):197-207.
[3] 彭开香,马亮,张凯.复杂工业过程质量相关的故障检测与诊断技术综述[J].自动化学报,2017,43(03):349-365.
[4] MA L, DONG J, PENG Geometric properties of partial least squares for process monitoring K X. A novel hierarchical detection and isolation framework for quality-related multiple faults in large-scale processes[J]. IEEE Transactions on Industrial Electronics, 2020, 67(2): 1316-1327.
[5] JIAO J, YU H, WANG G. A quality-related fault detection approach based on dynamic least squares for process monitoring[J]. IEEE Transactions on Industrial Informatics, 2016, 63(4): 2625-2632.
[6] 李莉,何曙光.基于LSSVM的多元过程非参数监控方法研究[J].工业工程,2020,23(1):18-22+34.
[7] 郑义林,刘永强,梁兆文,等.改进最小二乘变点识别法在负荷分解的应用[J].计算机测量与控制,2019,27(06):226-230.
[8] LI G, QIN S J, ZHOU D H. Geometric properties of partial least squares for process monitoring[J]. Automatica, 2010, 46(1): 204-210.

相似文献/References:

[1]朱 波,艾 红*.质量相关的回转窑故障诊断[J].工业仪表与自动化装置,2020,(02):12.
 ZHU Bo,AI Hong*.Quality relevant fault diagnosis of rotary kiln[J].Industrial Instrumentation & Automation,2020,(06):12.
[2]赵泽予,余 强,侯玉莲,等.电流互感器红外故障热像图自动诊断方法[J].工业仪表与自动化装置,2021,(06):78.[doi:10.19950/j.cnki.cn61-1121/th.2021.06.015]
 ZHAO Zeyu,YU Qiang,HOU Yulian,et al.Automatic diagnosis method of infrared fault thermal image of current transformer[J].Industrial Instrumentation & Automation,2021,(06):78.[doi:10.19950/j.cnki.cn61-1121/th.2021.06.015]
[3]秦宝坤,戴宇辉*,秦园莉,等.基于关联规则算法的卷烟厂空调系统传感器故障实时检测方法[J].工业仪表与自动化装置,2021,(06):83.[doi:10.19950/j.cnki.cn61-1121/th.2021.06.016]
 QIN Baokun,DAI Yuhui*,QIN Yuanli,et al.A real-time sensor fault detection method for air conditioning system in cigarette factory based on association rule algorithm[J].Industrial Instrumentation & Automation,2021,(06):83.[doi:10.19950/j.cnki.cn61-1121/th.2021.06.016]
[4]李宁宁,师玲萍.基于时间递归神经网络的轨道车辆自检系统设计[J].工业仪表与自动化装置,2023,(04):58.[doi:10.19950/j.cnki.cn61-1121/th.2023.04.011]
 LI Ningning,SHI Lingping.Design of rail vehicle self-test system based on time recursive neural network[J].Industrial Instrumentation & Automation,2023,(06):58.[doi:10.19950/j.cnki.cn61-1121/th.2023.04.011]
[5]吕智勇,岳海波,王向军,等.新型电磁感应式无源触发器分析与设计[J].工业仪表与自动化装置,2024,(03):3.[doi:DOI:10.19950/j.cnki.CN61-1121/TH.2024.03.001]
 LV Zhiyong,YUE Haibo,WANG Xiangjun,et al.Analysis and design of a new electromagnetic induction passive trigger[J].Industrial Instrumentation & Automation,2024,(06):3.[doi:DOI:10.19950/j.cnki.CN61-1121/TH.2024.03.001]

备注/Memo

备注/Memo:
收稿日期:2020-03-24
作者简介:姚林(1965),男,高级工程师,博士,现主要从事轧钢过程质量监测与优化等研究工作。
更新日期/Last Update: 1900-01-01